Cold recycling of bituminous mixtures

prof. Ezio Santagata
Politecnico di Torino

Università di L’Aquila - Facoltà di Ingegneria - 28th June 2007
Cold recycling of bituminous mixtures

Self introduction
Cold recycling of bituminous mixtures
Guidelines for presentation

• Give general overview of the topic
• Highlight interest/problems of society, users, road owners, designers and contractors

• Give some examples about specific solutions or problems

• Point out main key players in research

SPECIFIC AND OPEN QUESTIONS
RESEARCH NEEDS
Cold recycling of bituminous mixtures

Presentation structure

• General description
• Critical issues derived from research experience
 – Materials
 – Testing
 – Modelling
• Closure = Questions
Cold recycling of bituminous mixtures
General description

• RAP (reclaimed asphalt pavement)
 – bulk structure
• Bituminous emulsion
 – binder
• Filler (usually Portland cement)
 – filler and stiffening enhancement
• Added water
 – Workability and emulsion dispersion
• Virgin aggregates
 – integration to bulk structure
Cold recycling of bituminous mixtures
General description

In-field recycling (single or multiple unit)

In-plant recycling
Cold recycling of bituminous mixtures
General description

• Advantages:
 – Reduced use of raw materials
 – Reduction of disposal volumes
 – Lower environmental impact
 – Lower energy consumption
 – Reduced impact on labour health and safety
 – Cost reduction

• Disadvantages:
 – Reduced structural performance
 – **Problems in mix design, testing and modelling**

However, based on engineering experience, there are guidelines and specifications!
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Rehabilitation of motorway A4 Torino-Milano (1999-2001)
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Rehabilitation of motorway A4 Torino-Milano (1999-2001)
 - Production homogeneity

![Graph showing measured vs expected total binder content and water content over 7 days of monitoring.](image-url)
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Rehabilitation of motorway A4 Torino-Milano (1999-2001)
 - Production homogeneity
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Rehabilitation of motorway A4 Torino-Milano (1999-2001)
 - Compaction
Cold recycling of bituminous mixtures
Critical issues derived from research experience

• Load spreading function

EVALUATION OF STIFFNESS AND STRENGTH
Cold recycling of bituminous mixtures
Critical issues derived from research experience

• Problems to solve:
 – Testing technique
 – Sample preparation / coring

Selection of practical characterization techniques
Development of equipment and procedures
Cold recycling of bituminous mixtures
Critical issues derived from research experience

• Field compaction (static)
Cold recycling of bituminous mixtures
Critical issues derived from research experience

• Field compaction (static)
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Laboratory compaction (gyratory)
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Elastic stiffness testing (RLIT)

![Graph showing elastic modulus (E) vs. curing time (t) for two binder course mixes: 60/70 and 80/100. The graph includes data points for standard preparation and 150 kN - 5 min.]
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Indirect tensile strength (ITS) testing (static)
Cold recycling of bituminous mixtures
Critical issues derived from research experience

• Fatigue testing

\[y = 1371.5x^{-0.2153} \]
\[R^2 = 0.8657 \]
Cold recycling of bituminous mixtures
Critical issues derived from research experience

E = E₁ + k \cdot \log_{10}(\text{days})

Short term

Long term

Ezio Santagata – Politecnico di Torino
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Elastic stiffness parameters (E_1 and k) extremely sensitive to variations of:
 - Size distribution
 - Emulsion type
 - Compaction

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>1429</td>
<td>569</td>
<td>1256</td>
</tr>
<tr>
<td>k_E</td>
<td>1388</td>
<td>921</td>
<td>1591</td>
</tr>
<tr>
<td>E_{60}</td>
<td>3897</td>
<td>2206</td>
<td>4084</td>
</tr>
</tbody>
</table>

Lower binder content, coarser RAP, higher air voids
Cold recycling of bituminous mixtures
Critical issues derived from research experience

\[ITS = 0.467 + 0.281 \log t \]

\[ITS = 0.238 + 0.290 \log t \]
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- ITS parameters \((RTI_1 \text{ and } k_{RTI})\) extremely sensitive to variations of:
 - Size distribution
 - Emulsion type
 - Compaction

Lower binder content, coarser RAP, higher air voids
Cold recycling of bituminous mixtures
Critical issues derived from research experience

• Evolution of water content
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Evolution of water content
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Effect of curing temperature
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Effect of emulsion type and quantity
Cold recycling of bituminous mixtures
Critical issues derived from research experience

• Effect of filler type (cement vs quicklime)

\[E_{\text{quicklime}} = 53,615 \times \text{(days)} + 530.51 \]

Filler: 2%
Emulsion: 4%
Water: 1%
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Compaction properties (from gyratory equipment)
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Compaction properties (from gyratory equipment)
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Mix design

![Graph showing the relationship between water content and dry density](image-url)
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Mix design

![Chart showing workability vs. water content](image-url)
Cold recycling of bituminous mixtures
Critical issues derived from research experience

• Mix design

\[
%FF_{\text{optimum}} = %w_{\text{added}} + (a+Kb) \cdot %E
\]

Indirect tensile strength, ITS (N/mm²)

Dry density, G_{dry} (g/cm³)
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Short term characterization
 - UNBOUND?

- Resilient modulus M_R
- Failure (p-q) criteria
Cold recycling of bituminous mixtures
Critical issues derived from research experience

• Short term characterization
 – UNBOUND?

![Graph showing Mr (Modello) vs. θ [kPa]]
Cold recycling of bituminous mixtures
Critical issues derived from research experience

• Short term characterization
 – UNBOUND?
Cold recycling of bituminous mixtures
Critical issues derived from research experience

- Characterization of the emulsion-filler system

Interconnected binding matrix
 High modulus, high strength

Porous binding matrix
 Low modulus, low strength
Cold recycling of bituminous mixtures
Closure - Questions

- Can production plants be improved?
- Can compaction techniques be improved?
- Should RAP be separated in fractions to control gradation?
- Are rejuvenators needed?
- Are modified emulsions needed?
- What type of filler should be used?
- How much stiffness is needed?
- Options to mix design?
- Options to performance testing?
- Coring?
- Field testing?
Thanks for your attention

ezio.santagata@polito.it