AFFERRARE L’ILLUSIONE DI UZNADZE: LA MANO È GUIDATA DALLA GRANDEZZA RELATIVA E DALLA SOMIGLIANZA DELLA FORMA

Relatore:
Professor NICOLA BRUNO

Correlatore:
Professoressa LUCIA RIGGIO

Laureando:
STEFANO UCCELLI

ANNO ACCADEMICO 2016/2017
INDICE

ABSTRACT ... 5

CAPITOLO 1: INTRODUZIONE ... 7
 1.1: Organizzazione funzionale del sistema visivo .. 7
 1.1.2: Il modello di Ungerleider e Mishkin .. 7
 1.1.3: L’ipotesi dei due sistemi visivi (TVSH) di Milner e Goodale 7
 1.2: Cinematica e illusioni visive ... 9
 1.2.2: Dissociazione fra percezione e azione in soggetti sani 10
 1.2.3: Critiche al paradigma di Aglioti et al. .. 11
 1.3: Dissociazione fra percezione e azione? il dibattito ad oggi 12
 1.3.2: Studi recenti ... 13
 1.4: L’illusione di Uznadze ... 14
 1.4.2: L’illusione di Uznadze nel sistema visivo ... 15
 1.5: La ricerca ... 16
 1.5.2: Ipotesi e obiettivi ... 17

CAPITOLO 2: METODI E STRUMENTAZIONE ... 19
 2.1: Strumentazione ... 19
 2.2: Stimoli ... 20
 2.3: Partecipanti .. 21
 2.4: Procedura ... 21
 2.5: Design ... 23
 2.6: Validazione dati e analisi ... 24
CAPITOLO 3: RISULTATI.. 27
 3.1: Analisi dei dati.. 27
 3.2: Discussione... 37
 3.3: Conclusioni.. 39

BIBLIOGRAFIA .. 41
Milner e Goodale (1995) proposero un modello in cui il sistema visivo è diviso in due sistemi separati, uno per la percezione e l'altro per l'azione (ipotesi dei due sistemi visivi o TVSH). In accordo con la TVSH, Aglioti et al. (1995) riportarono che la percezione è influenzata dalle illusioni di contrasto di grandezza, ma non il movimento di raggiungimento-preensione, affermando che il sistema motorio si basa sulla grandezza assoluta dell’oggetto e non su quella percepita. Tuttavia altri lavori riportano che inserendo stimolazioni spaziali e temporali adatte il sistema motorio viene influenzato dalla grandezza relativa percepita. Nell’esperimento (N = 48) è stata usata una versione tridimensionale dell'illusione di Uznadze (lo stesso stimolo viene percepito più piccolo se preceduto da uno stimolo più grande e più grande se preceduto da uno stimolo più piccolo). Kappers e Tiest (2014) riportarono che la percezione aptica dell’illusione di Uznadze viene influenzata dall’incongruenza fra stimolo inducente e stimolo bersaglio. Nell’esperimento è stata inclusa anche una condizione di incongruenza fra gli stimoli per valutarne l’effetto sul sistema motorio. Riportiamo che l’MGA (massima apertura delle dita durante l’afferramento di un oggetto) è fortemente influenzato dall'effetto di Uznadze, ma decresce quando gli stimoli sono incongruenti. Sono riportati dati aggiuntivi in contrasto con la dissociazione prevista dalla TVSH.
CAPITOLO 1

INTRODUZIONE

1.1 Organizzazione funzionale del sistema visivo

La funzione del sistema visivo non è unicamente quella di rappresentare un modello interno del mondo e degli oggetti, ma anche quella di darci la possibilità di interagire con essi. Studi di neuroanatomia e neurofisiologia su modelli animali documentano l’esistenza di una separazione dei circuiti deputati alla visione a partire dalla corteccia visiva primaria. Le informazioni visive dalla retina giungono all’area visiva primaria (V1, o area 17 di Brodmann) e da questa nascono due vie visive distinte: una ventrale che termina nella corteccia infero-temporale (IT) e una dorsale che passa dall’area medio-temporale (MT) e giunge nella corteccia parietale posteriore (PPC). Le due vie ricevono afferenze sia parvocellulari che magnocellulari, quest’ultime presenti soprattutto nella via dorsale. Da parecchi anni quindi si è sviluppata l’idea dell’esistenza di due sistemi visivi separati e indipendenti.

1.1.2 Il modello di Ungerleider e Mishkin

Ungerleider e Mishkin furono tra i primi a ipotizzare una suddivisione anatomo-funzionale nel sistema visivo (Ungerleider e Mishkin, 1982). Negli studi condotti da questi autori lesioni selettive alla corteccia IT rendevano la scimmia incapace di discriminare tra oggetti con forme diverse, mentre lesioni alla corteccia PPC rendevano incapace la scimmia nel discriminare tra diverse posizioni, suggerendo una dissociazione funzionale fra le due vie. Gli autori proposero quindi che la via ventrale è responsabile dell’elaborazione visiva degli oggetti mentre la dorsale è deputata alla codifica della posizione nello spazio degli oggetti, spesso chiamate le vie del cosa e del dove.
1.1.3 L’ipotesi dei due sistemi visivi (TVSH) di Milner e Goodale

Milner e Goodale ripresero il modello di Ungerleider e Mishkin e proposero un’interpretazione diversa, pur condividendo gran parte del modello iniziale. La grande differenza nel modello di Milner e Goodale è la funzione attribuita alla via dorsale, che piuttosto di essere un sistema deputato alla sola localizzazione degli oggetti essi lo considerano un sistema per il controllo visivo per la guida delle azioni (Milner e Goodale, 1995). Le due vie quindi sarebbero specializzate in compiti differenti: la via ventrale un sistema dotato di alta sensibilità alle frequenze spaziali (elaborazione del dettaglio) e poco sensibile al movimento; la via dorsale invece un sistema dotato di alta sensibilità temporale (elaborazione del movimento), poco sensibile ai dettagli pittorici. Le due vie sono state riformulate come via del cosa e via del come. Questo modello prende il nome di “Two Visual System Hypothesis”, chiamato per brevità TVSH (fig. 1.1).

Fig. 1.1: Schema esemplificativo del modello a due vie di Milner e Goodale

La TVSH quindi propone una doppia dissociazione fra ventrale e dorsale non sono anatomicamente anatomicamente ma anche funzionale, chiamata anche dissociazione fra percezione e azione. Le principali prove a favore della dissociazione derivano dallo studio di casi singoli affetti da agnosia ottica e atassia visiva. Agnosia e atassia sono particolari
disturbi percettivi dovuti generalmente a lesioni cerebrali: il paziente con agnosia fallisce nel riconoscere gli oggetti ma riesce a manipolarli correttamente; il paziente con atassia ottica riconosce correttamente gli oggetti ma non riesce a manipolarli per uno scopo. L’agnosia visiva è dovuta a danni della via ventrale mentre l’atassia ottica a danni della via dorsale, procurando rispettivamente deficit di riconoscimento e deficit di programmazione motoria (Karnath, Rüter, Mandler, Himmelbach, 2009). Milner e Goodale riportano consistenti studi sulla famosa paziente DF che a seguito di un’intossicazione da monossido di carbonio acquisì un’agnosia per le forme (M. Goodale, A Milner, 2004). La paziente venne sottoposta a diversi test neuropsicologici che rivelarono deficit di discriminazione degli oggetti ma nessun deficit apparente nell’utilizzo degli oggetti nella vita quotidiana. Agnosia e atassia sembrano a favore di una doppia dissociazione fra la visione-per-la-percezione e la visione-per-l’azione in accordo con la TVSH (Goodale, Milner, Carey, Jakobson, 1991).

1.2 Cinematica e illusioni visive

Milner e Goodale hanno indagato la TVSH anche nelle persone sane attraverso l’uso di apparecchiature per la registrazione del movimento. Quando vogliamo afferrare un oggetto possiamo utilizzare una presa a tutta mano (presa di forza) oppure usare solo pollice e indice (presa di precisione). Il sistema motorio quando interagiamo con un oggetto si basa su un parametro cinematico fondamentale definito raggiungimento per la prensione, o più semplicemente afferramento. Il parametro più studiato è l’apertura massima delle dita durante il movimento di afferramento (*maximum grip aperture* o MGA). La MGA è sempre maggiore rispetto alla grandezza fisica dell’oggetto, ma proporzionale a questa (*grip scaling*). Questo aspetto rappresenterebbe il mezzo di misura utilizzato dalla programmazione motoria per la prensione degli oggetti. Milner e Goodale hanno studiato la cinematica di persone sane attraverso compiti che prevedevano l’influenza di illusioni visive. Per illusioni visive si intendono esperienze percettive anomale in cui le informazioni derivanti da stimoli esterni portano ad una falsa interpretazione degli stessi. In sostanza sono dovute a interpretazioni sensoriali errate che noi percepiamo in contrasto con la
realtà. Le illusioni visive nello studio della percezione-azione sono state spesso utilizzate per studiare la dissociazione prevista dalla TVSH nella popolazione non patologica. Sono state utilizzate diverse illusioni (illusione di Titchner-Ebbinghaus, illusione orizzontale/verticale, illusione di Ponzo, illusione di Muller-Lyer ecc.), in particolare le illusioni di contrasto di grandezza. In queste illusioni la configurazione degli stimoli porta le persone a valutare uno dei due stimoli bersaglio come più grande dell’altro quando invece la loro dimensione fisica è identica. Secondo la TVSH, il sistema motorio non si lascerebbe influenzare dalla dimensione percepita ma si baserebbe sulla grandezza fisica dell’oggetto.

1.2.2 Dissociazione fra percezione e azione in soggetti sani

In una celebre ricerca del gruppo di Aglioti ai partecipanti venivano presentati dei dischetti di diametro diverso circondati da dischi di grandi o piccoli (l’illusione di Titchner-Ebbinghaus, figura 1.2.1) chiedendo di eseguire due compiti diversi: un compito di stima manuale del diametro del disco e un compito di afferramento del dischetto. L’esperimento fu condotto attraverso l’uso di un’apparecchiatura di registrazione cinematica che consente di tracciare e misurare movimenti corporei anche molto fini come un comportamento di afferramento. Il compito veniva eseguito in piena visione ovvero il soggetto durante l’esecuzione della stima manuale o dell’afferramento aveva a disposizione il feedback sensoriale visivo.

Fig 1.2.1: L’illusione di contrasto di grandezza di Ebbinghaus: il dischetto circondato da cerchi piccoli viene percepito più grande del dischetto circondato da dischi grandi, quando in realtà i due dischetti hanno identiche dimensioni fisiche.
I risultati furono sorprendenti: quando i partecipanti stimavano la grandezza con pollice e indice il disco circondato da dischi piccoli questo veniva giudicato più grande dell’altro. Quando invece i dischi dovevano essere afferrati non sono state trovate differenze nell’apertura delle dita. In sostanza, durante l’afferramento la mano seguirebbe le dimensioni reali dell’oggetto e non quella percepita. Questi risultati sono a favore di una dissociazione fra percezione e azione in accordo con la TVSH di Milner e Goodale (Aglioti, DeSouza, Goodale, 1995). Secondo gli autori la via ventrale è sensibile alle illusioni geometriche perché influenzabile dalle configurazioni percettive; viceversa il sistema dorsale ignora queste influenze percettive e si basa solo sull’oggetto fisico. Milner e Goodale affermano:

1.2.3 Critiche al paradigma di Aglioti et al.

Molti ricercatori studiarono nuovamente gli effetti delle illusioni visive sul sistema motorio. Pavani et al. (1999) e Franz et al. (2001) criticarono il lavoro pionieristico di Aglioti e Goodale in almeno due punti fondamentali. In primo luogo il compito veniva svolto dai partecipanti in completa visione; questi paradigmi possono essere svolti in presenza di feedback visivo (compito closed loop) o in sua assenza, in cieco (compito open loop). Closed e open loop si riferiscono al ciclo dell’azione: nel primo è possibile correggere il movimento in corso attraverso feedback visivi nel secondo non possono avvenire aggiustamenti (Woodworth, 1899). Secondo aspetto altrettanto importante nel compito percettivo di Aglioti et al. il soggetto valutava i dischetti basandosi su entrambe le configurazioni di Ebbinghaus mentre il compito motorio si basava su una configurazione alla volta. La discrepanza tra motorio e percettivo a favore di quest’ultimo è spiegabile da un effetto additivo (stimato circa del 50%)
dovuto proprio all’asimmetria tra i due compiti (Franz, 2000). Pavani et al. provarono a replicare i risultati di Aglioti modificando in parte il paradigma originale, adottando una sola configurazione di Ebbinghaus. I risultati andarono in direzione contraria al lavoro di Aglioti et al. trovando che le MGA (massima apertura delle dita) durante il compito di afferramento erano sensibilmente influenzate dall’illusione di Ebbinghaus (Pavani, Boscagli, Benvenuti, Rabuffetti, Farnè, 1998).

1.3 Dissociazione fra percezione e azione? il dibattito ad oggi

La doppia dissociazione proposta nella TVSH è molto dibattuta. Sono riportati brevemente alcuni lavori che hanno approfondito il discorso sottolineando gli aspetti utili alla comprensione dell’approccio teorico-metodologico del lavoro svolto in questa tesi.

Bruno (2001) sostiene che la specializzazione funzionale delle due vie potrebbe essere più flessibile di quella proposta da Milner e Goodale. Il punto cruciale consiste nel sistema di riferimento adottato: inserendo stimolazioni temporali o spaziali possiamo ottenere output motori diversi sulla base delle stesse informazioni visive, infatti ritardare un’azione può modificare il *grip scaling* da assoluto-metrico a relativo-contestuale. In altre parole indurre una stimolazione visiva attraverso un ritardo può portare la mano a cadere in inganno all’illusione piuttosto che basarsi sulla grandezza reale dell’oggetto. Inoltre afferma che se è possibile ottenere risposte reali o illusorie sia in compiti percettivi che motori (a patto di un corretto schema di riferimento) allora probabilmente la TVSH nella sua formulazione originale è troppo rigida (Bruno, 2001).

Franz (2001, 2003) si è soffermato su aspetti tecnici e di misura degli effetti illusori. Sostiene che occorre misurare diversamente tutti gli effetti piccoli (*small effects*) riportati in diversi lavori nei compiti motori rispetto alla misurazione dell’effetto nel compito percettivo dato che sono intrinsecamente diversi. Il problema risiede nelle funzioni che caratterizzano i due compiti: la stima manuale può avere intercetta zero e pendenza uguale a 1, mentre l’afferramento ha sempre intercetta maggiore di zero e pendenza minore di 1 (Smeets e Brenner, 1999). Per poter comparare effetti
percettivi e motori, Bruno e Franz in una meta-analisi su 33 studi indipendenti di cinematica sull’illusione di Muller Lyer proposero una misura più adatta per misurare gli effetti illusori. Si prende in considerazione la differenza fra l’effetto di espansione e di compressione dell’illusione e la si esprime sulla base della grandezza fisica reale e della pendenza relativa del soggetto che ha svolto il compito (effetto illusorio corretto). Questa formula permette un confronto più realistico fra effetto illusorio percettivo ed effetto illusorio motorio (Bruno & Franz, 2009).

Goodale criticò questo metodo di “calibrazione” affermando che non portasse sufficienti prove statistiche a sfavore dei dati psicofisici e neuropsicologici che sostengono la dissociazione ventrale-dorsale. Schenk et al. affermano che la correzione sull’effetto illusorio fra percezione e azione è fondamentale per poter comparare i due compiti aggiungendo che: a) sotto certe condizioni anche il sistema dorsale è sempre influenzato dalle illusioni visive, b) l’effetto nel motorio è più piccolo dell’effetto percettivo quando il compito è svolto closed-loop e c) l’effetto motorio è paragonabile all’effetto percettivo quando il compito viene svolto in open-loop (Schenk, Franz, Bruno, 2011).

1.3.2: Studi recenti

In un recente lavoro in collaborazione fra le Università di Parma, Old Aberdeen (Regno Unito), Amburgo e Munich (Germania) sono stati raccolti dati cinematici di 144 partecipanti sottoposti all’illusione di Titchner-Ebbinghaus implementando alcune condizioni di controllo. Le analisi evidenziano effetti illusori anche nel sistema motorio paragonabili agli effetti nel sistema visivo, contrariamente all’ipotesi della dissociazione prevista dalla TVSH. Non solo, sono state trovate anche delle correlazioni fra effetto percettivo ed effetto motorio: l’ipotesi è che se un soggetto mostra un forte effetto percettivo anche l’effetto motorio sarà simile e viceversa. Tuttavia le correlazioni sono moderate e non tutte significativamente diverse da zero. Gli autori quindi concludono suggerendo una formulazione della TVSH meno rigida (Kopiske, Bruno, Hesse, Schenk, Franz, 2016). Nonostante l’evidenza di questi dati Whitwell e Goodale di recente hanno criticato il lavoro di Kopiske et al. nel 2016.
sostenendo con fermezza che questo lavoro non aggiungesse evidenze sufficienti e che il metodo a singola stimolazione non è il metodo corretto per studiare il fenomeno (Whitwell e Goodale, 2016). Kopiske et al. sempre nel 2016 ribattono alla critica sul loro lavoro affermando che l’obiettivo non era replicare lo studio di Aglioti e Goodale ma di trovare e quantificare gli effetti dell’illusione di Ebbinghaus sul sistema motorio facendo chiarezza sui risultati discordanti in letteratura (Kopiske et al., 2016).

Infine alcuni lavori sull’interpretazione della TVSH non ricorrono né a pazienti neurologici né a illusioni visive. In un recente studio condotto presso l’Università di Parma si è voluto indagare se la visione per la percezione e la visione per l’azione si adeguassero entrambe alla nota legge psicofisica di Weber (la sensibilità di un canale sensoriale decresce secondo specifiche costanti all’aumentare dell’intensità fisica dello stimolo). Se il sistema motorio si basa solamente sulle caratteristiche metriche allora la sua precisione non dovrebbe diminuire all’aumentare dell’intensità dello stimolo. In questo esperimento sono stati eseguiti un compito di stima manuale e un compito di afferramento su un’ampia gamma di stimoli afferrabili, da 5 mm a 120 mm, in assenza di feedback visivo. I risultati mostrano come entrambe la percezione-per-la-visione e la percezione-per-l’azione violino la legge di Weber per stimoli medio-grandi, diversamente da precedenti lavori (Bruno, Uccelli, Viviani, de’Sperati, 2016). Questi risultati si integrano nel dibattito percezione-azione fornendo nuove implicazioni sull’interpretazione della TVSH.

1.4 L’illusione di Uznadze

Questa illusione è stata descritta per la prima volta da Uznadze nella percezione aptica (una sfera viene percepita più piccola se preceduta da una sfera grande e più grande se preceduta da una sfera piccola) (Uznadze, 1966). Questo effetto rientra nei fenomeni di adattamento che prendono il nome di after effect, ovvero modifiche percettive a seguito di stimolazioni precedenti. Questo after effect si traduce in un contrasto di grandezza proprio come l’illusione di Ebbinghaus. Kappers e Tiest (2013) hanno provato a riprodurre l’illusione aptica di Uznadze utilizzando un’ampia gamma di sfere di misure diverse con l’obiettivo di quantificare la forza dell’effetto.
I soggetti tenevano in mano le sfere inducenti per qualche secondo e poi venivano sostituite con la sfera bersaglio; la consegna era quella di riportare le dimensioni di quest’ultima. I risultati furono molto chiari: i soggetti giudicarono in media più piccole le sfere-bersaglio indotte dalla sfera grande e più grandi le sfere-bersaglio indotte dalla sfera piccola (fig. 1.4.1). I due autori si domandarono anche se questo effetto fosse dovuto alla forma o alla curvatura delle sfere. In un lavoro successivo decisero di studiare l’effetto utilizzando sfere e tetraedri in quattro condizioni diverse, in compiti congruenti e incongruenti utilizzando l’una o l’altra forma come inducente. Se l’after-effect fosse dovuto principalmente alla grandezza degli stimoli l’effetto di contrasto dovrebbe verificarsi anche quando il bersaglio è incongruente con l’inducente (ovvero sfera – tetraedro o tetraedro – sfera); se invece la caratteristica principale responsabile dell’effetto è la forma geometrica allora l’effetto dovrebbe diminuire nelle condizioni incongruenti.

![Stimoli utilizzati da Kappers e Bergmann per stimare l’effetto dell’illusione di Uznadze nel sistema aptico. Sopra: il range di dimensioni di sfere e tetraedri. Sotto: i due stimoli inducenti ai lati e lo stimolo target intermedio al centro.](image)

I risultati vanno proprio in questa direzione: sia sfere che tetraedri indotti da loro stessi comportano forti effetti di contrasto di grandezza, mentre nelle condizioni incongruenti l’effetto si riduce drasticamente (Kappers e Tiest, 2014).
1.4.2 L’illusione di Uznadze nel sistema visivo

Questo effetto percettivo è stato studiato da un gruppo di ricercatori dell’ex dipartimento di neuroscienze di Parma nel sistema visivo. L’esperimento è stato svolto al computer sul quale venivano presentati al soggetto una coppia di stimoli inducenti composti da un cerchio grande e da un cerchio piccolo. Dopo un’induzione temporale attraverso la quale la coppia di cerchi lampeggiava sullo schermo un certo numero di volte, appariva la coppia di cerchi bersaglio e il compito del soggetto era quello di scegliere il più velocemente possibile il cerchio che gli appariva più grande premendo destra o sinistra sulla tastiera. L’obiettivo principale della ricerca era quello di dimostrare che anche il sistema visivo è influenzato dall’illusione di contrasto di grandezza di Uznadze, e da altre caratteristiche di alto livello come colore e forma (fig. 1.4.2). I risultati mostrano un forte effetto percettivo pari a circa 10-12%. (Bruno, Daneyko, Garofalo, Riggio, ECVP 2016).

Fig 1.4.2: versione semplificata dell’illusione di Uznadze visiva. Il disco bersaglio di destra viene percepito dalla maggioranza delle persone più grande rispetto al suo gemello a sinistra.
1.5 La ricerca

Le considerazioni metodologiche descritte fino ad ora hanno motivato il nostro studio. Per il lavoro di questa tesi abbiamo utilizzato l’illusione di Uznadze per i seguenti motivi:

- 1) l’effetto illusorio è più forte rispetto a quello di Ebbinghaus
- 2) non richiede una configurazione percettiva aggiuntiva attorno agli stimoli bersaglio
- 3) il suo funzionamento è analogo ad altri contrasti di grandezza.

Come precedentemente suggerito da Pavani et al. (1999) e Franz (2000) in questo lavoro l’illusione viene presentata con una sola configurazione per volta, per risolvere l’asimmetria fra compito percettivo e motorio precedentemente descritto. Tutto l’esperimento è stato condotto con la procedura open-loop per evitare possibili aggiustamenti durante le fasi di stima e afferramento.

1.5.2 Ipotesi sperimentali e obiettivi

Effetto dell’illusione di Uznadze sul sistema motorio

Considerati i risultati ottenuti con l’illusione di Uznadze nel sistema aptico e nel sistema visivo ci aspettiamo un’influenza anche nel sistema motorio. L’obiettivo principale è valutare se l’illusione di contrasto di grandezza di Uznadze influenza o meno la MGA durante il compito motorio.

Confronto fra effetti percettivi e motori

Ci aspettiamo che gli effetti percettivi e motori non siano sostanzialmente diversi fra loro, a sostegno di una non dissociazione fra percettivo e motorio. Per rendere confrontabili i due effetti illusori è stata utilizzata la formula dell’effetto percentuale corretto proposta da Bruno e Franz (2009).

Effetto della somiglianza della forma

Il nostro secondo obiettivo è valutare se e come la somiglianza della forma influenzi le stime manuali ma soprattutto l’afferramento. Nel percettivo, analogamente alle
conclusioni nel sistema aptico di Kappers e Tiest (2014) ci aspettiamo una forte riduzione dell’effetto con stimoli incongruenti. Nel motorio invece non dovremmo osservare differenze rispetto alla condizione congruente: come proposto da Milner e Goodale, la via dorsale si basa esclusivamente sul segnale locale, ovvero solo sulle caratteristiche dello stimolo bersaglio, ignorando altre caratteristiche percettive contestuali. In linea con questa ipotesi quindi nella condizione incongruente dovremmo osservare un’interazione: un effetto debole nel percettivo e nel motorio un effetto simile al compito congruente. Per valutare questa ipotesi inseriremo degli stimoli inducenti di forma quadrata incongruenti con la forma circolare degli stimoli bersaglio. Inoltre, per massimizzare l’effetto di incongruenza fra gli stimoli, invertiremo il contrasto di bianchezza fra stimolo e sfondo nella condizione incongruente rispetto alla condizione congruente.
CAPITOLO 2
METODI E STRUMENTAZIONE

2.1 Strumentazione

La ricerca è stata condotta presso il laboratorio di cinematica all’Unità di Neuroscienze del dipartimento di Medicina e Chirurgia (DiMeR) dell’Università degli studi di Parma. Il laboratorio disponeva di due postazioni computer fisse. Su uno dei due computer venivano eseguiti gli script di Matlab dai quali lo sperimentatore leggeva la configurazione dello stimolo da presentare. Sull’altro computer era installato il programma di acquisizione del movimento. Per la registrazione del movimento è stato utilizzato un sistema di quattro telecamere ad infrarossi BTS-SMART-DX 100, con una frequenza di acquisizione media di 200 fps, e accuratezza pari a <0.2 mm su un volume di 2 x 2 x 2 m. I due computer comunicavano attraverso mezzo di un connettore NI-USB (National Instrument) il quale consentiva di attivare l’acquisizione del movimento quando al computer arrivava uno specifico comando eseguito dal soggetto partecipante sulla tastiera. Infine ai partecipanti veniva fatto indossare un paio di occhiali occludenti PLATO, (Translucent Technologies Inc. Toronto, Ontario, Canada; Milgram, 1987), i quali grazie ad una tecnologia a cristalli liquidi sono in grado di impedire o meno la visione a seconda dei comandi eseguiti sulla tastiera attraverso l’occlusione delle lenti. Al soggetto venivano applicati tre marker di materiale sensibile agli infrarossi, in corrispondenza del pollice, indice e articolazione del polso (in prossimità dell’osso radio) della mano destra (fig. 2.1.1).

![Fig. 2.1.1, da sinistra: una delle telecamere ad infrarossi BTS-SMART-DX; la mano di un partecipante con applicati i marker cinematici; gli occhiali PLATO.](image)
2.2 Stimoli

Sono stati utilizzati dei dischetti di legno colorati di bianco dalle seguenti misure (diametro x spessore): 10 mm x 10 mm, 35 mm x 10 mm, 40 mm x 10 mm, 45 mm x 10 mm e 120 mm x 10 mm. I dischetti venivano posizionati al centro di un pannello A4 (21 cm x 29.7 cm) di colore nero che a sua volta veniva posizionato su un supporto in plastica, in posizione orizzontale; per la condizione incongruente sono stati utilizzati dei quadrati di legno colorati di nero dalle seguenti misure (lato x lato): 10 mm x 10 mm, 40 mm x 40 mm e 120 mm x 120 mm, tutti di spessore pari a 10 mm. Questi quadrati venivano posizionati al centro di un pannello A4 di colore bianco, a sua volta posizionato su un supporto in plastica. I dischetti venivano sospesi al pannello mediante delle puntine passanti, permettendo una facile rimozione durante l’esecuzione del compito di afferramento (fig. 2.2.1)

![Stimoli](image)

Fig. 2.2.1: rappresentazione grafica degli stimoli. In alto: i tre dischetti bersaglio utilizzati in tutti e tre gli esperimenti. Al centro: gli stimoli inducenti utilizzati nel primo e secondo esperimento. In basso: gli stimoli inducenti utilizzati nel secondo e terzo esperimento.
2.3 Partecipanti

Sono stati reclutati 48 soggetti (23 M e 25 F) di età compresa fra 21 e 33 anni (media = 26.1; deviazione standard = 3.3), la maggior parte studenti di diversi corsi dell’Università di Parma, tutti destrimani e con acuità visiva normale o corretta. Per ognuno dei 3 esperimenti condotti ogni campione era composto da 16 soggetti, bilanciati per sesso.

2.4 Procedura

In tutti e tre gli esperimenti, in ogni prova, uno sperimentatore posizionava gli stimoli. Ogni esperimento era composto da due compiti diversi, un compito di stima manuale del bersaglio (ME) e un compito motorio di afferramento (GRSP). Entrambe le condizioni venivano effettuate in condizioni open-loop attraverso la chiusura degli occhiali PLATO. Nel primo compito si andava a misurare la massima distanza fra indice e pollice durante la stima manuale (“OLME”: open loop manual estimation) mentre nel compito motorio si misurava la massima apertura delle dita (MGA) durante il movimento di grasping (“OLPG”: open loop precision grip).

Ogni prova si svolgeva come spiegato di seguito: il soggetto indossando gli occhiali attendeva il segnale dello sperimentatore con la mano sulla barra spaziatrice in posizione di partenza (pollice e indice uniti). Al primo segnale di “via” il soggetto premeva e rilasciava una volta la barra spaziatrice azionando gli occhiali i quali si aprivano/chiudevano per 5 volte consecutive con un intervallo temporale di 0.25 ms permettendo al soggetto di osservare il dischetto inducente posto sul supporto, distante 43 cm dalla barra spaziatrice; al termine gli occhiali rimanevano chiusi e un segnale sonoro informava lo sperimentatore di sostituire rapidamente il dischetto inducente con il dischetto bersaglio. Al secondo segnale di “via”, il soggetto premeva e teneva premuto la barra spaziatrice quanto desiderava permettendo agli occhiali di rimanere aperti durante la pressione. A questo punto la consegna cambiava a seconda del compito:

- OLME: “dopo aver visto il bersaglio rilascia la barra spaziatrice ed esegui una stima alla cieca con pollice e indice indicando quanto ti è sembrato
grande il dischetto. Quando sei sicuro della stima, rimani fermo e con la mano sinistra premi e lascia la barra spaziatrice per permettere alle telecamere di registrare la stima”. Il tempo di acquisizione era impostato a 0.1 ms. A registrazione avvenuta un segnale acustico informava il termine della prova;

- OLPG: “dopo aver visto il bersaglio lascia la barra spaziatrice e vai ad afferrare il dischetto con pollice e indice con un movimento il più possibile naturale e fluido. Appoggia il dischetto sul tavolo”. Nel momento in cui la barra veniva rilasciata gli occhiali si chiudevano e un trigger informava le telecamere di acquisire il movimento in corso per un periodo di 3 s, pertanto non era necessario la pressione aggiuntiva della barra spaziatrice. Un segnale acustico informava della fine della prova (fig. 2.3.1).

Ogni sessione era preceduta da una fase di pratica sia della stima che dell’afferramento effettuati in open loop fino a quando il soggetto non si sentiva ragionevolmente a suo agio nel compiere il movimento.

![Fig. 2.3.1: rappresentazione schematica dell’esecuzione del compito. Sopra la sequenza per la stima manuale (OLME), sotto per l’afferramento (OLPG). Ogni prova si ripeteva sempre secondo queste sequenze.](image_url)

2.5 Design

In ogni sessione ciascun stimolo inducente (120, 40, 10) veniva presentato 15 volte, per un totale di 45 prove; di queste 15 prove venivano presentati 5 bersagli 35, 5 bersagli 40 e 5 bersagli 45. Abbiamo utilizzato tre stimoli bersaglio diversi per evitare il rischio di risposte stereotipate. Il primo esperimento prevedeva due blocchi (OLME e OLPG) da 45 prove ognuno per un totale di 90 prove. I due blocchi sono stati eseguiti unicamente nella condizione congruente (disco-disco). Il secondo esperimento prevedeva quattro blocchi (2 OLME e 2 OLPG) da 45 prove ognuno per un totale di 180 prove. Oltre alla condizione congruente i soggetti eseguivano anche la condizione incongruente (quadrato – disco); i quattro blocchi erano quindi così composti: OLME – Congruente, OLPG – Congruente, OLME – Incongruente e OLPG – Incongruente. Infine il terzo esperimento prevedeva due blocchi (OLME e OLPG) da 45 prove ognuno, esclusivamente incongruente. L’ordine di presentazione di ogni prova in ogni blocco è stato randomizzato sia per gli stimoli inducenti che per gli stimoli bersaglio. In ogni esperimento le condizioni sono state controbilanciate.

Ogni primo blocco OLME e OLPG venivano preceduti da un training che permetteva al soggetto di prendere confidenza con la stima manuale e l’afferramento da eseguire in open-loop (fig. 2.5.1).

<table>
<thead>
<tr>
<th>exp. 1</th>
<th>partecipanti</th>
<th>condizioni</th>
<th>compito</th>
<th>prove</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=16</td>
<td>congruente</td>
<td>OLME</td>
<td>N=45</td>
</tr>
<tr>
<td>exp. 2</td>
<td>N=16</td>
<td>congruente + incongruente</td>
<td>OLPG + OLPG</td>
<td>N=45</td>
</tr>
<tr>
<td>exp. 3</td>
<td>N=16</td>
<td>incongruente</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig.2.5.1: tabella riassuntiva del design dell’esperimento.
2.6 Validazione dati e analisi

Prima di condurre le analisi i dati cinematici grezzi sono controllati uno ad uno per individuare eventuali errori di acquisizione del movimento durante le sessioni di registrazione soprattutto per quanto riguarda le prove di afferramento. Tutti i dati sono stati inseriti su degli script di R che elaboravano traiettoria delle dita, profilo di velocità e la distanza fra i marker, distanze sulle quali sono state calcolate ME e MGA. Per poter essere considerato un buon movimento di afferramento il profilo cinematico deve rispettare due aspetti: l’apertura delle dita all’inizio del movimento deve essere intorno a 2 cm (ovvero pollice e indice chiusi) e la presenza di un solo picco MGA. Sono stati scartati tutti quei trials che presentavano una partenza superiore a 4 cm e/o quelli che presentavano più di un picco intorno al valore di MGA (vedi figura 2.6). Tutti i dati sono stati raccolti in Excel. L’analisi e grafici sono stati elaborati con R.

Fig 2.6 evoluzione temporale dell’apertura pollice-indice in una tipica prova. Lo zero corrisponde all’inizio della prova (le dita si sollevano dal tasto). In ascissa il tempo di registrazione. In ordinata l’ampiezza della apertura delle dita. La linea rossa verticale identifica l’MGA.
Le variabili dipendenti studiate sono state la distanza fra pollice indice nella ME e la MGA nell’afferramento. Per il calcolo e il confronto degli effetti illusori è stata adottata la formula proposta da Bruno e Franz (2009):

$$\text{Effetto illusorio corretto} = \frac{(\text{Effetto espansione} - \text{effetto compressione})}{b} \times \frac{100}{d},$$

ovvero: la parentesi indica la differenza fra le medie dell’effetto di espansione e di compressione, b la pendenza del modello lineare e d il diametro del dischetto bersaglio.
CAPITOLO 3

RISULTATI

3.1 Analisi dei dati

Le variabili dipendenti analizzate sono la stima manuale nel compito percettivo, corrispondente alla distanza tra pollice e indice durante la stima (ME), e la massima apertura delle dita durante il movimento di afferramento nel compito motorio (MGA). Sono state eliminate dall’analisi tutte le prove che presentavano un’apertura delle dita minore di 20 mm e maggiore di 150 mm, ritenuti valori inverosimili e probabilmente dovuti a errori del partecipante, e le prove di afferramento che deviavano dai parametri descritti nella sezione precedente (< 1.5%). Per prima cosa sono stati analizzati i pattern dei dati in funzione della grandezza fisica del disco bersaglio e in funzione degli stimoli inducenti per la descrivere il fenomeno di contrasto di grandezza; successivamente sono stati analizzati gli effetti illusori corretti per soggetto per valutarne l’intensità nei quattro diversi compiti. Sulla base di questi dati è stata condotta un’analisi della varianza per gruppi dipendenti (within) a due fattori (compito e condizione) sugli effetti illusori percentuali corretti. Il livello di significatività è stato fissato a $\alpha = 0.05$. Infine è stata eseguita un’analisi di controllo escludendo valori estremi individuati come outlier.

Analisi preliminare

Per prima cosa sono state studiate le distribuzioni delle prove separatamente per ME e MGA. In fig 3.1 sono riportati gli istogrammi che rappresentano la frequenza e la distribuzione delle prove dell’intero campione, indipendentemente dalla condizione di congruenza e incongruenza. In tab.1 è riportato il confronto fra le statistiche dei due compiti percettivo e motorio.
Fig 3.1:istogrammi delle distribuzioni di tutte le prove percettive e motorie. Sopra: distribuzione delle ME. Sotto distribuzione delle MGA.

<table>
<thead>
<tr>
<th>Parametri</th>
<th>Stima manuale (ME)</th>
<th>Massima apertura (MGA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. prove</td>
<td>2879</td>
<td>2874</td>
</tr>
<tr>
<td>Media</td>
<td>54.82</td>
<td>75.39</td>
</tr>
<tr>
<td>Mediana</td>
<td>54.23</td>
<td>76.04</td>
</tr>
<tr>
<td>DS</td>
<td>12.9</td>
<td>13.33</td>
</tr>
<tr>
<td>Asimmetria</td>
<td>0.71</td>
<td>-0.24</td>
</tr>
<tr>
<td>Curtosi</td>
<td>4.62</td>
<td>2.55</td>
</tr>
</tbody>
</table>

Tabella 1: confronto fra i parametri delle distribuzioni delle prove ME e MGA.

In fig 3.2 sono rappresentate per ogni condizione sperimentale le distribuzioni delle prove ME e MGA di ogni soggetto e le medie aritmetiche del campione (N = 32) in funzione della grandezza fisica del dischetto (mm). Le intercette dei compiti di afferramento sono sensibilmente più grandi rispetto a quelle del compito percettivo, questo perché l’apertura delle dita durante l’afferramento di un oggetto è sempre abbondantemente maggiore per assicurare la prensione. Nei due compiti percettivi i modelli lineari rivelano che i coefficienti angolari sono maggiori di 1; nei compiti
motori i coefficienti angolari sono invece inferiori a 1: questi dati sono in accordo con i parametri riportati in letteratura (Smeets e Brenner, 1999). Tutti e quattro i modelli lineari rivelano che sia intercette che coefficienti angolari sono significativamente diversi da zero (p < 0.05), come riportato nella tabella 2. Inoltre dal grafico si può notare come tutte le medie della condizione incongruente sono leggermente più grandi rispetto alle medie congruenti: due t.test per campioni indipendenti hanno rilevato che le medie complessive tra congruente e incongruente sono significativamente diverse fra loro (p < .01) in entrambi i compiti percettivo e motorio.

Fig 3.2: ME e MGA in funzione del diametro del bersaglio. Le linee corrispondono ai modelli lineari delle quattro condizioni. Linee continue: ME; linee tratteggiate: MGA. In rosso la condizione congruente (disco-disco) in blu la condizione incongruente (quadrato-disco). I pallini pieni rappresentano le medie aritmetiche per ogni disco bersaglio in ogni condizione.
In fig. 3.3 sono rappresentate per ogni condizione sperimentale le distribuzioni delle ME e MGA di ogni soggetto e le medie aritmetiche del campione (N = 32) in funzione della grandezza fisica dello stimolo inducente (mm). Secondo l’ipotesi sperimentale, se l’effetto di contrasto di grandezza dell’illusione di Uznadze influenza sulla grandezza percepita dovremmo aspettarci aperture delle dita più grandi quando è stato presentato l’inducente piccolo e viceversa più piccole quando è stato presentato l’inducente grande, ottenendo grosso modo un pattern inverso rispetto al grafico precedente. L’inducente 40 funge da condizione di baseline, ovvero quando lo stimolo inducente e stimolo target combaciano non sia ha l’effetto di contrasto di grandezza dell’illusione. Sia nel compito percettivo che in quello motorio indipendentemente dalla condizioni congruente e incongruente si è trovato un incremento dell’apertura media delle dita quando il bersaglio era indotto dallo stimolo piccolo e un decremento quando indotto dallo stimolo grande. In tabella 3 sono riportate le medie con relativi IC e SEM.

<table>
<thead>
<tr>
<th>compito</th>
<th>congruenza</th>
<th>pendenza</th>
<th>lol.</th>
<th>upl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>yes</td>
<td>1.012</td>
<td>0.864</td>
<td>1.161</td>
</tr>
<tr>
<td>ME</td>
<td>no</td>
<td>1.207</td>
<td>1.057</td>
<td>1.356</td>
</tr>
<tr>
<td>MGA</td>
<td>yes</td>
<td>0.908</td>
<td>0.738</td>
<td>1.077</td>
</tr>
<tr>
<td>MGA</td>
<td>no</td>
<td>0.955</td>
<td>0.816</td>
<td>1.094</td>
</tr>
</tbody>
</table>

Tabella 2: coefficienti angolari con relativi intervalli di fiducia (conf. lev. 95%).

Tabella 3: medie delle ME e MGA in funzione dello stimolo inducente per ogni condizione sperimentale con relativi IC (conf. lev. 95%) ed errori standard delle medie (SEM).
Fig. 3.3: ME e MGA in funzione del diametro dello stimolo inducente. Le linee indicano la direzione dell’illusione di contrasto di grandezza fra effetto espandente (10), baseline (40) ed effetto riducente (120). Linee continue: ME; linee tratteggiate: MGA. In rossò la condizione congruente (disco-disco); in blu la condizione incongruente (quadrato-disco). I pallini pieni rappresentano le medie aritmetiche per ogni inducente in ogni condizione.

Analisi degli effetti illusori percentuali

La figura 3.4 mostra la distribuzione degli effetti percentuali corretti per ogni soggetto. Come illustrato precedentemente nel capitolo 2, il design del secondo esperimento prevedeva che i partecipanti eseguissero entrambe le condizioni congruente e incongruente, ottenendo N = 64 (32 congruenti e 32 incongruenti). La formula utilizzata per il calcolo dell’effetto percentuale è la stessa proposta da Bruno e Franz (2009). Per fare ciò è stato fittato un modello lineare per entrambi i compiti percettivo e motorio in funzione della dimensione fisica del bersaglio per ogni
soggetto; da questi modelli lineari è stato estratto il coefficiente angolare che rifletteva l’andamento di ogni partecipante. La differenza fra effetto espandente ed effetto riducente dell’illusione viene quindi espresso in funzione della pendenza e riepresso in percentuale permettendoci di paragonare ME e MGA. Nel grafico ogni pallino corrisponde ad un soggetto, individuato da due coordinate che sono l’effetto corretto ME e l’effetto corretto MGA. I pallini più grandi rappresentano le medie complessive degli effetti percentuali nella condizione congruente e incongruente accompagnate dalle barre di errore (SEM) sia per l’effetto percettivo (barre orizzontali) sia per l’effetto motorio (barre verticali). Durante l’analisi ci si è accorti della forte variabilità tra soggetti nell’entità degli effetti percentuali corretti, alcuni di essi molto forti; a tal proposito si è ritenuto opportuno affiancare alle medie aritmetiche anche la mediana che è un indicatore di tendenza centrale più robusto ai casi estremi. Medie e mediane con relativi intervalli di fiducia sono riportati in tabella 4.

<table>
<thead>
<tr>
<th>compito</th>
<th>congruenza</th>
<th>mean</th>
<th>lol.</th>
<th>upl.</th>
<th>median</th>
<th>lol.</th>
<th>upl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGA</td>
<td>yes</td>
<td>5.121</td>
<td>2.085</td>
<td>8.153</td>
<td>2.581</td>
<td>1.184</td>
<td>3.976</td>
</tr>
<tr>
<td>ME</td>
<td>no</td>
<td>4.171</td>
<td>2.169</td>
<td>6.171</td>
<td>2.852</td>
<td>1.601</td>
<td>4.101</td>
</tr>
<tr>
<td>MGA</td>
<td>no</td>
<td>0.634</td>
<td>-0.663</td>
<td>1.931</td>
<td>0.606</td>
<td>-0.115</td>
<td>1.330</td>
</tr>
</tbody>
</table>

Tabella 4: medie e mediane degli effetti illusori corretti con relativi intervalli di fiducia (conf. lev. 95%).

Come suggerito nel lavoro di Kopiske et al. (2016) gli effetti percettivi e motori potrebbero essere fra loro dipendenti di conseguenza abbiamo calcolato il grado di associazione con la correlazione lineare di Pearson. Nella condizione congruente \(r \) è pari a 0.3 ma non raggiunge la significatività (\(p > 0.05, \text{IC} = -0.4 \ 0.5 \)). Nella condizione incongruente \(r \) è pari a -0.19 lontano dalla significatività (\(p > 0.5, \text{IC} = -0.36 \ 0.33 \)). Tuttavia, considerando entrambe le condizioni \(r \) è pari a 0.25 e raggiunge la significatività (\(p < 0.5, \text{IC} = 0.02 \ 0.46 \)).
Fig 3.4: in ascissa gli effetti illusori percentuali per le ME, in ordinata per le MGA. Ogni pallino corrisponde ai due effetti corretti di ogni soggetto. Le linee tratteggiate corrispondono allo zero. I pallini pieni rappresentano le medie aritmetiche per la condizione congruente e incongruente con le relative barre di errore (SEM). La linea grigia diagonale corrisponde all’ipotesi nulla di differenza tra effetti percettivi e motori.

In fig. 3.5 sono rappresentati gli effetti percentuali corretti medi per entrambe ME e MGA, divisi per condizione congruente e incongruente. Questo grafico permette di visualizzare il cambiamento degli effetti corretti quando gli inducenti passano da congruenti e incongruenti in entrambi i compiti. Le barre corrispondono all’errore standard delle medie. Sono stati calcolati un t.test per campione singolo per tutte e quattro le medie (ME Congruente, ME Incongruente, MGA Congruente, MGA Incongruente) per valutare che fossero significativamente diverse da zero. Le prime tre sono risultate significativamente diverse da zero (ME Congruente: t(6.15), df =
31, \(p < .001 \); ME Incongruente: \(t(4.2), \text{df} = 31, p < .005 \); MGA Congruente: \(t(3.4), \text{df} = 31, p < 0.005 \) tranne l’ultima (MGA Incongruente: \(t(0.99), \text{df} = 31, p > 0.5 \)).

Fig 3.5: effetto medio percentuale corretto separatamente per compito percettivo (ME) e compito motorio (MGA). I pallini corrispondono all’effetto medio (\(N = 32 \)). Le barre d’errore corrispondono all’errore standard della media. In rosso: condizione congruente. In blu: condizione congruente. La linea grigia tratteggiata in basso corrisponde allo zero quindi all’ipotesi nulla dell’assenza di effetto illusorio.

Infine la figura 3.6 mostra la distribuzione degli effetti illusori percentuali espressi come differenza fra percettivo e motorio. Lavori precedenti in letteratura risportano effetti percettivi di diversi intensità ed effetti motori tendenzialmente scarsi, sostenendo che 1) gli effetti percettivi e motori seguono processi diversi e 2) l’effetto motorio, quando trovato, è sempre minore all’effetto percettivo. Nella condizione congruente un t.test per campioni indipendenti ha rivelato che la differenza fra effetto percettivo ed effetto motorio non è significativamente diverso da zero (\(p > .05 \)).
indicando una non differenza fra i due compiti. Nella condizione incongruente sempre un t.test per campioni indipendenti ha rivelato una differenza significativa fra effetto percettivo ed effetto motorio (p < .05).

![Fig. 3.6: differenza fra effetto illusorio percettivo e motorio. La linea tratteggiata corrisponde ad una differenza pari a zero.](image)

Analisi della varianza

Per l’analisi della varianza è stata condotta un’ANOVA fattoriale 2x2 per campioni dipendenti con interazione (livelli condizione: congruente/incongruente; livelli compito: ME/MGA). Sono stati inseriti nel modello gli effetti illusori corretti di ogni partecipante (N = 64): considerate entrambi i compiti percettivo e motorio abbiamo un N totale pari a 128. Gli effetti principali del compito e della condizione sono risultati significativi (p < .05. Tuttavia l’interazione fra condizione e compito non è risultata significativa (p > .05). I dati completi sono riportati nella tabella 5.
N = 128
<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>sum of squares</th>
<th>mean of squares</th>
<th>F-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grande media</td>
<td>1</td>
<td>2119.71</td>
<td>2119.71</td>
<td>57.029</td>
<td><.01***</td>
</tr>
<tr>
<td>Condizione</td>
<td>1</td>
<td>355.802</td>
<td>355.802</td>
<td>9.57</td>
<td><.05**</td>
</tr>
<tr>
<td>Compito</td>
<td>1</td>
<td>182.03</td>
<td>182.028</td>
<td>4.89</td>
<td><.05*</td>
</tr>
<tr>
<td>Compito * condizione</td>
<td>1</td>
<td>42.39</td>
<td>42.39</td>
<td>1.14</td>
<td>n.s.</td>
</tr>
<tr>
<td>Errore</td>
<td>124</td>
<td>4608.93</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: n.s. sta per non significativo, * indica p < .05, ** indica p < .01, *** indica p < .001.

Tabella 5: ANOVA fattoriale 2x2 con interazione per campioni dipendenti sugli effetti illusori corretti.

Analisi senza outlier

Dopo aver condotto le analisi delle varianze ci si è chiesti se l’influenza di valori estremi, considerata l’ampia variabilità degli effetti illusori percettivi e motori intorno alla loro media, potesse avere un peso significativo sui risultati delle analisi. Nella figura 3.3 si possono notare alcuni valori sensibilmente maggiori rispetto alla tendenza centrale individuata; per appurare la presenza o meno di outlier in ogni condizione sperimentale si è utilizzato il criterio della deviazione mediana assoluta (MAD) secondo la seguente formula:

\[
\text{abs}(\text{effetto corretto} - \text{mediana(effetto corretto)}) / \text{MAD(effetto corretto)} > 3
\]

ovvero sono stati considerati outlier tutti i valori maggiori di 3 individuati come: scarto dell’effetto illusorio dalla mediana in base alla deviazione mediana assoluta, espressi in valori assoluti. Tale formula ha individuato 8 effetti illusori percentuali considerabili outlier. Per testare la bontà dei risultati è stata ricondotta l’analisi rimuovendo questi casi estremi (N=56). A parte qualche leggera fluttuazione delle medie e delle mediane, le ANOVA fattoriali per campioni indipendenti restituiscono esattamente i risultati precedentemente riportati, concludendo che il modello è robusto alla forte variabilità dei dati.
3.2 Discussione

Effetto dell’illusione di Uznadze sul sistema motorio

Nella prima parte dell’analisi abbiamo indagato se entrambi i compiti percettivo e motorio rispettassero i parametri riportati da Smeets e Brenner (1999). L’analisi preliminare delle distribuzioni mostra che ME e MGA possiedono tendenze centrali differenti: più bassa nel primo caso e più alta nel secondo. Le distribuzioni per il resto sono simili tranne per l’asimmetria: le ME presentano una cosa a destra mentre gli MGA una coda a sinistra. Valutando congiuntamente le condizioni congruente e incongruente riportiamo per il percettivo un coefficiente angolare di 1.11 e per il motorio 0.93. In particolare per il motorio si ha una leggera sovrastima rispetto allo 0.8 riportato da Smeets e Brenner. Appurato che i due compiti rispettassero le funzioni i parametri attesi, abbiamo analizzato l’effetto dello stimolo inducente sull’apertura delle dita nei due compiti. I dati sono chiari: entrambe ME e MGA sono più grandi quando il bersaglio (40) era preceduto dall’inducente piccolo (10) e più piccole quando il bersaglio era preceduto dall’inducente grande (120). Possiamo affermare che l’illusione di contrasto di grandezza di Uznadze, già studiata nel sistema aptico da Kappers e Tiest (2014) e nel sistema visivo da Bruno et al. (2016), influenzano anche il sistema motorio nei compiti di afferramento. La presentazione di questa illusione con un singolo stimolo alla volta rivela una chiara influenza sul sistema motorio analogamente all’illusione di Ebbinghaus, come riportato da Pavani et al. (1998) o più recentemente dal lavoro di Kopiske et al. (2016).

Confronto fra effetti percettivi e motori

Abbiamo indagato se gli effetti percettivi e motori fossero significativamente diversi tra loro come sostenuto da Aglioti et al. (1995). Per fare questo abbiamo espresso i compiti percettivi e motori di ogni soggetto attraverso la formula proposta da Bruno e Franz (2009) descritta precedentemente. L’analisi rivela che nella condizione congruente la differenza fra compito percettivo e motorio non è significativamente diversa da zero, contrariamente quanto affermato da Aglioti et al. e in accordo con Kopiske et.al (2016). Questi dati sono a sfavore di una dissociazione fra percezione e azione prevista dalla TVSH. È necessario notare tuttavia un’ampia variabilità degli
effetti percettivi individuali. Le correlazioni fra effetto percettivo e motorio congruente e incongruente non sono risultate significative. Significativa invece la correlazione fra percettivo e motorio nell’intero campione, a prescindere dalla congruenza o meno. Riteniamo questi dati marginali siccome non vi sono ragioni sufficienti per affermare che effetti percettivi e motori debbano tra loro essere dipendenti entro il soggetto.

Effetto della somiglianza della forma

Si è trovata una riduzione degli effetti illusori nel sistema percettivo dovuti all’incongruenza della forma, in accordo con Kappers and Tiest (2014), ma anche nel sistema motorio. Contrariamente all’ipotesi iniziale anche il sistema motorio è influenzato dall’incongruenza della forma, suggerendo che entrambi i sistemi percettivo e motorio sono influenzati dalle caratteristiche percettive contestuali. Come si può notare in figura 3.5, il decremento dell’effetto illusorio nel motorio è decisamente più marcato rispetto al compito percettivo, raggiungendo lo zero. Riteniamo che questi risultati siano dovuti alle proprietà del sistema ventrale dorsale: nel ventrale le informazioni percettive perdurano più a lungo rispetto al sistema dorsale, nel quale invece le informazioni in entrate hanno vita molto più breve. Il forte effetto di riduzione dell’afferramento in condizioni incongruenti potrebbe essere spiegato da questa differenza funzionale dei due sistemi. Anche questi dati sono a favore di una non dissociazione fra le vie ventrale e dorsale della TVSH.

Limiti metodologici

Occorre evidenziare che la variabilità individuale dei dati è probabilmente in parte spiegata da aspetti metodologici. Per primo, diversamente dai compiti svolti al computer nella versione visiva, i nostri soggetti non posizionavano il capo su una mentoniera: questo permetteva oscillazioni della fissazione e aggiustamenti posturali che potevano influenzaire la fase di induzione e la fase di afferramento. Inoltre il cambio dello stimolo inducente con quello bersaglio veniva svolto da un sperimentatore manualmente: questa operazione richiedeva alcuni secondi di attesa
prima che il soggetto potesse guardare il disco bersaglio. Rispetto alla presentazione istantanea al computer questa procedura sfavorisce la fase di induzione percettiva. Infine, nei nostri esperimenti durante il compito percettivo dopo aver stimato il dischetto bersaglio la prova terminava; in diversi lavori recenti dopo la stima manuale il soggetto effettuava un’afferramento alla cieca disabituando il movimento della mano per evitare stime manuali stereotipate. I nostri dati percettivi possono essere parzialmente influenzati dalla mancanza di questo aspetto di controllo.

3.3 Conclusioni

Concludendo, come riportato da precedenti ricerche non sono state trovate prove a favore della dissociazione fra percezione e azione proposta dalla TVSH, suggerendo una formulazione del modello più flessibile. L’illusione di Uznadze si è rivelata analoga all’illusione di Ebbinghaus quando viene presentato un solo stimolo alla volta. In questo lavoro è stato trovato un forte effetto illusorio nel sistema motorio, non diverso dall’effetto illusorio percettivo quando la forma dello stimolo è congruente tra inducente e bersaglio. Quando la forma dello stimolo era incongruente si è trovata una diminuzione sincrona dell’effetto illusorio sia nel percettivo che nel motorio, suggerendo che la via dorsale è influenzabile anche da caratteristiche percettive contestuali, contrariamente alle ipotesi iniziali. Affermiamo che l’apertura della mano è guidata dalla grandezza relativa e non assoluta degli stimoli e influenzata anche dalla somiglianza della forma, in contrasto con quanto previsto dalla TVSH. Questi risultati suggeriscono l’idea che l’afferramento si basi anche su informazioni contestuali, e non solo locali. Proponiamo che il sistema dorsale non è completamente indipendente dal sistema ventrale, ma solo parzialmente, e influenzabile da caratteristiche percettive di alto livello come la somiglianza della forma.
BIBLIOGRAFIA

Uznadze D. N. (1966): *The psychology of set*. *Consultants Bureau*, New York,

Whitwell R., Goodale M. (2016): “Real and illusory issues in the illusion debate (why two things are something better than one): commentary on Kopiske et al., 2016”. *Cortex* 88, 205-209.