Dottorato di ricerca in Scienze Medico-Veterinarie
Ciclo XXIX

NUOVE TECNICHE DI VALUTAZIONE DELL’ATTIVITÀ RIPRODUTTIVA DI FEMMINE DI PITONE REALE
(\textit{Python regius}) MANTENUTE IN CATTIVITÀ

INNOVATIVE EVALUATION TECHNIQUES OF THE FEMALE REPRODUCTIVE ACTIVITY IN CAPTIVE BRED ROYAL PYTHON (\textit{Python regius})

Coordinatore:
Chiar.mo Prof. Attilio Corradi

Tutor:
Chiar.mo Prof. Enrico Parmigiani

Dottorando: Dott.ssa Mara Bertocchi
INDICE

ABSTRACT ... 5
INTRODUZIONE .. 8

CAPITOLO 1: IL PITONE REALE (*Python regius*) 10
1.1 Classificazione .. 10
1.2 Distribuzione geografica e *habitat* ... 10
1.3 Morfologia e longevità ... 12
1.4 Riproduzione e sviluppo .. 16
1.5 Alimentazione ... 16
1.6 Comportamento .. 17
1.7 Conservazione e legislazione .. 19

CAPITOLO 2: GESTIONE SANITARIA DELL’ALLEVAMENTO 23
2.1 Quarantena ... 23
2.2 Stabulazione ... 24
2.3 Arricchimenti .. 27
2.4 Temperatura .. 29
2.5 Umidità .. 30
2.6 Illuminazione .. 31
2.7 Igiene ... 31
2.8 Alimentazione .. 32
2.9 Muta ... 34
2.10 Registrazione dati .. 36

CAPITOLO 3: RIPRODUZIONE 37
3.1 Cenni di anatomia e fisiologia 37
3.2 Sessaggio ... 42
3.3 Esame obiettivo generale e particolare 44
3.4 Principali patologie riproduttive 45
 3.4.1 Morte embrionale ... 45
 3.4.2 Distocia ... 47
 3.4.3 Prolasso di emipeni e ovidutti 51
 3.4.4 Anomalie del prodotto del concepimento 52
 3.4.5 Celomite da uovo .. 53
3.5 Conditioning ed accoppiamento 54
3.6 Alimentazione dei soggetti riproduttori 56
3.7 Fecondazione e gestazione 56
3.8 Deposizione .. 57
3.9 Incubazione delle uova .. 57
3.10 Schiusa e gestione dei neonati 61

CAPITOLO 4: VALUTAZIONE DELL’ATTIVITÀ
RIPRODUTTIVA FEMMINILE DEI RETTILI 63
4.1 Monitoraggio ecografico .. 64
4.2 Monitoraggio ormonale .. 68
CAPITOLO 5: ATTIVITÀ SPERIMENTALE

5.1 Obiettivi

5.2 Materiali e metodi

5.2.1 Area di Studio

5.2.2 Soggetti sperimentali

5.2.3 Raccolta dati

5.2.4 Valutazione ecografica

5.2.5 Prelievo di campioni fecali

5.2.6 Dosaggio del 17β-estradiolo

5.2.7 Dosaggio del progesterone

5.2.8 Validazione del test

5.2.9 Analisi statistica

5.3 Risultati

5.3.1 Valutazione ecografica e comportamentale

5.3.2 Durata delle singole fasi e crescita follicolare

5.3.3 Valutazione ormonale

5.3.4 Risultati complessivi

CAPITOLO 6: DISCUSSIONE

CAPITOLO 7: CONCLUSIONI

BIBLIOGRAFIA
The Royal python (*Python regius*) is one of the non-conventional species most commonly bred in captivity. To have healthy, well-acclimated, captive-bred snakes an accurate monitoring of the reproductive activity is necessary. As for most of exotic species, also for reptiles it is important to use non-invasive monitoring methods, in order to have repeated evaluations minimizing the animal stress. Ultrasonography has been successfully used to evaluate reproduction in many reptile species, such as tortoises, lizards and some snakes. Ultrasound allows the visualization of follicles, embryonic structures and viability. Non-invasive hormonal monitoring using urine or feces has also been applied with good results in a variety of animal species. However, little is known on the Royal python reproductive activity, and there are no studies evaluating the hormonal aspect in this species. The aim of the present study is to monitor the female reproductive cycle of Royal python using ultrasonography and gonadal steroid metabolite measurement in feces. 129 adult female *P. regius* were examined at one-week intervals during two reproductive cycles (2015-2016). All the animals were captive born and individually housed in rack, at temperature of 28-31°C under a 12:12 h L/D cycle. We performed brief (5 min) scans on non-anaesthetized *P. Regius* using a portable ultrasound system and a 10-12 MHz linear array transducer (MyLab™ 30 Gold, Esaote). The position, ultrasound features, dimension and echogenicity of the reproductive structures
were determined. During the second reproductive cycle, 30 animals have been also evaluated in relation to the hormonal profile, with monthly collection of faecal samples. These samples were classified according to reproductive stage, and mean fecal Progesterone and 17β-Estradiol levels were calculated using results obtained by assaying these samples (by enzyme-linked immunosorbent assay, ELISA).

Follicles in different stages of development were located laterally on both sides within the caudal half of the body in all female samples. Follicles and eggs in various stages of development, follicles undergoing regression were observed. On the basis of the sonographic appearance and size of follicles and eggs, we have divided the reproductive cycle in four phases: anovulatory phase, transition, folliculogenesis and embryogenesis. The folliculogenesis ends with ovulation, and thus indicates the correct time for entering the male. Progesterone showed an upward trend from the anovulatory phase to embryogenesis. Estradiol instead showed greater variability, with higher levels during the anovulatory phase and transition, compared to the later stages of the cycle. Ultrasonography has been widely used as a rapid and non-invasive method for image soft tissues of the coelomic cavity in reptiles. Because of interspecific variability, it is important to consider individually the different species.

The present study suggests that by ultrasound it is possible to clearly identify different phases in the Royal python female reproductive cycle. It is a definitely important technique in the context of a professional breeding, to precisely detect the folliculogenesis phase and thus to highlight the right time to introduce the male. This technique is also useful to identify the females with follicular regression or slugs producing. Furthermore gonadal steroid metabolite measurement in feces, especially the evaluation of progesterone, could be an important help to integrate the reproductive information.
regarding a specific female. In conclusion, our study suggests that the association of ultrasonography and the sexual steroid metabolite measurement in feces gives an accurate picture of ovarian activity in captive adult female Royal python.
INTRODUZIONE

L’allevamento di rettili in cattività ha mostrato una notevole diffusione negli ultimi vent’anni (Brant, 2001; Stahl, 2001; Aulyia, 2003). Ciò è dovuto sia all’aumentata richiesta di nuovi animali da compagnia, sia alla possibilità di salvaguardare specie minacciate nel loro habitat naturale, preservandole dall’estinzione (Stahl, 2002; Lance et al., 2009). In particolare, molte specie di serpenti vengono comunemente allevate in cattività, quali boa constrictor, boa smeraldino (Corallus caninus), boa delle sabbie (Eryx jaculus), pitone reale (Python regius), pitone birmano (Python bivittatus), pitone reticolato (Malayopython reticulatus). Da ciò deriva la necessità di una corretta gestione medico-veterinaria della riproduzione degli esemplari, tema strettamente legato ad aspetti quali biosicurezza, benessere animale, profilassi, diagnosi e trattamento di eventuali patologie (Scott, 2002). Per un buon successo riproduttivo è fondamentale considerare, per le singole specie allevate, le caratteristiche e le varie fasi del ciclo riproduttivo, della gestazione, nonché le tecniche di incubazione. Come in altre specie, il monitoraggio del ciclo riproduttivo femminile, in particolare, può avvenire attraverso varie metodiche. Come indicatore più affidabile dell’attività gonadica, è generalmente riconosciuto il dosaggio degli ormoni sessuali plasmatici. Tuttavia, a causa dello stress che ciò comporta per gli animali, questa tecnica non si prestà per una valutazione frequente dell’attività riproduttiva in soggetti sani particolarmente sensibili allo stress, come nel caso delle specie esotiche e non convenzionali (Schwarzenberger et al., 1996; Touma e Palme 2005; Al-Kindi et al., 2006; Ganesh e Yajurvedi, 2007; Brasfield et al., 2008). Risulta quindi
fondamentale, per tali specie, il ricorso a tecniche di monitoraggio poco o non invasive (Lasley e Kirkpatrick, 1991; Brown et al., 1997). Nel caso particolare dei rettili, l’ultrasonografia rappresenta una delle metodiche più utilizzate (Rivera, 2008; Stahlschmidt et al., 2011). Per un’ottimale comprensione della riproduzione di una determinata specie, sarebbe però importante approfondire le conoscenze anche da un punto di vista fisiologico con la valutazione dei livelli degli steroidi sessuali durante il ciclo riproduttivo (Schatz e Palme, 2001; Norris, 2007; Kummrow et al., 2011). A tale proposito, una tecnica innovativa ed assolutamente non invasiva, ma ancora poco impiegata relativamente ai rettili, è rappresentata dal dosaggio dei metaboliti fecali di suddetti ormoni (Atkins et al., 2002; Kummrow et al., 2011). In particolare, in letteratura è ancora scarso il contributo per quanto riguarda l’attività riproduttiva del pitone reale e ad oggi non sono riportate ricerche relative alla valutazione degli ormoni sessuali in questa specie.

Lo scopo del presente studio è pertanto quello di monitorare il ciclo riproduttivo di femmine di pitone reale allevate in cattività, utilizzando l’ecografia e la misurazione non invasiva dei metaboliti fecali degli steroidi sessuali.

CAPITOLO 1: IL PITONE REALE (*Python regius*)

1.1 Classificazione

Il pitone reale (*Python regius* Shaw, 1802) appartiene alla famiglia dei Pitonidi, insieme a specie quali pitone reticolato (*Python reticulatus*), pitone burmese (*Python molurus bivittatus*) e pitone tappeto (*Morelia spilota*) (Fig.1).

- Regno: *Animalia*
- Phylum: *Chordata*
- Classe: *Reptilia*
- Ordine: *Squamata*
- Famiglia: *Pythonidae*
- Genere: *Python*
- Specie: *P. regius*

Fig. 1.1 Esemplare di Pitone reale

1.2 Distribuzione geografica e *habitat*

Questa specie è originaria dell’Africa, con una vasta distribuzione che si estende da Sudan e Uganda attraverso vari Paesi dell’Africa centrale ed occidentale sino in Senegal e Sierra...
Leone, Togo, Benin e Ghana sono tra i Paesi in cui si registra una maggior concentrazione di esemplari (De Vosjoli, *et al.*, 1995; Sillman, *et al.*, 1999, Graf, 2011) (Fig. 1.2). Il pitone reale occupa le praterie della savana, ma anche le aree forestali. Sono stati inoltre segnalati alcuni soggetti anche in aree destinate all’agricoltura (De Vosjoli *et al.*, 1995).

Fig. 1.2 Areale di distribuzione del pitone reale.

1.3 Morfologia e longevità

I pitoni reali mostrano una lunghezza compresa tra i 25 ed i 43 centimetri alla nascita, mentre da adulti misurano generalmente da 1 a 1,5 metri. Sono tuttavia state segnalate alcune eccezioni, con esemplari selvatici di 1,83 metri di lunghezza. Tra gli esemplari adulti è presente dimorfismo sessuale, i maschi hanno infatti dimensioni inferiori rispetto alle femmine. Queste hanno inoltre mascelle più lunghe rispetto ai maschi, con conseguente aumento della capacità di deglutizione e migliori capacità di caccia. In entrambi i sessi, la testa presenta dimensioni maggiori rispetto al collo, relativamente sottile (De Vosjoli *et al.*, 1995; Aubret *et al.*, 2005; Barker e Barker, 2006). Questa specie presenta un alto numero di variazioni cromatiche. Oltre al fenotipo ancestrale, sono infatti note decine di mutazioni genetiche, dette *morph*, alcune delle quali presenti in natura (ad esempio l’Albino, il Pastel o lo Spider) mentre altre sono state realizzate in cattività mediante incroci tra soggetti con diverso fenotipo (Sutherland, 2009) (Fig. 1.3; 1.4; 1.5; 1.6). Nel fenotipo ancestrale la livrea presenta una colorazione di base che varia dal nocciola chiaro al marrone scuro ed un pattern nero che attraversa il dorso del serpente e scende lungo i fianchi, con bande di spessore variabile. La testa è scura e bordata da due linee gialle, il ventre è invece di colore bianco con numerose
macchie nere concentrate soprattutto sui lati. Gli occhi possono essere neri o marroni scuri, in ogni caso la pupilla è ben distinguibile solo in controluce. Generalmente i soggetti giovani presentano una colorazione gialla più ampia rispetto agli adulti (Broghammer, 2001; Sutherland, 2009). Tra i vari *morph* si distinguono:

- Dominanti: Calico, Champagne/Puma, Pinstripe, Spider
- Codominanti: Banana, Black pastel, Butter, Lesser Platinum, Mojave, Phantom, Cinnamon, Enchi, Fire, Jungle Pastel, Lemon Pastel, Sable, Spot Nose, Vanilla, Woma, Yellowbelly
- Dominanti e codominanti (a seconda del lignaggio genetico): Desert Ghost, Genetic banded, Granite, Ringer
- Recessivi: Albino, Lavender Albino, Caramel Albino, Axantic (3 linee diverse), Clown, Genetic stripe, Piebald

Si stima che la durata media della vita del pitone reale in natura sia di 10 anni. A differenza, in condizioni di cattività un esemplare vive mediamente 20 anni, con eccezioni di esemplari che hanno raggiunto i 28 (zoo di Oakland) ed i 50 anni di vita (riportato dallo Zoo di Philadelphia) (Gorzula *et al*., 1997; Bartlett e Bartlett, 2000; Bartlett *et al*., 2001).
Fig. 1.3 Pitone reale – fenotipo ancestrale

Fig. 1.4 Pitone reale - *morph* Albino (mutazione cromatica recessiva caratterizzata da colorazione bianca con disegno giallo, data dalla mancata sintesi di melanina)
Fig. 1.5 Pitone reale – *morph* Piebald (Mutazione cromatica recessiva, caratterizzata da molte sfumature arancioni e nere, in contrasto con aree bianche, che possono rappresentare meno del 30% in esemplari “low white” fino ad oltre il 90% in quelli denominati “high white”)

Fig. 1.6 Pitone reale – *morph* Banana (*morph* base co-dominante)
1.4 Riproduzione e sviluppo

Il pitone reale ha una lunga vita riproduttiva, compresa tra i 16 mesi ed i 30 anni d’età. In particolare, i maschi raggiungono la maturità sessuale già a 16 mesi (peso di circa 700 g), mentre le femmine tra i 24 ed i 31 mesi (con peso di almeno 1500 g). La stagione riproduttiva si colloca generalmente tra metà settembre e metà novembre, in corrispondenza con la seconda stagione delle piogge, detta *minor rainy season*. La gravidanza ha una durata variabile tra 44 e 54 giorni (De Vosjoli, *et al.*, 1995; Sutherland, 2009).

Ogni femmina può deporre da 1 ad 11 uova, che per alcuni giorni aderiscono le une alle altre (De Vosjoli, *et al.*, 1995). Nella maggior parte dei casi, la deposizione avviene durante la seconda metà della stagione secca, ossia da metà febbraio a inizio aprile. La femmina rimane generalmente arrotolata in prossimità delle uova sino alla schiusa, che si verifica dopo 2 mesi dalla deposizione (Ellis e Chappell, 1986; Aubret *et al.*, 2002). Il peso alla nascita è mediamente di 86 g, con variabilità tra 65 e 103 g; la lunghezza è compresa tra 25 e 43 cm. I neonati sono immediatamente indipendenti, ma tendono a rimanere nelle vicinanze per alcuni mesi (De Vosjoli, *et al.*, 1995; Graf, 2011).

1.5 Alimentazione

Il pitone reale è un carnivoro, dotato di mascella e mandibola mobili. Nella caccia, questi esemplari tendono a stare nascosti ad attendere la preda. Vengono sfruttati segnali visivi, chimici e tattili. In particolare, questo animale è infatti in grado di rilevare il calore emanato da altri organismi presenti nel suo ambiente. Inoltre, alcuni studi hanno
evidenziato che i raggi ultravioletti potrebbero avere un ruolo determinante in associazione ai segnali chimici. Questi ultimi possono infatti riflettere la luce ultravioletta permettendo così al pitone di rintracciare la preda (McDonald, 1996; Sillman et al., 1999). L’alimentazione di questa specie è costituita quasi esclusivamente da roditori, che vengono immobilizzati per costrizione e poi deglutiti. Tra le prede più comuni figurano il ratto gigante africano (Cricetomys gambianus), il ratto nero (Rattus rattus) e il topo dell’erba (Lemniscomys spp). (Greene, 1997; Ott e Secor, 2007). La frequenza di alimentazione del pitone reale è molto bassa e ciò è reso possibile grazie ad un’ampia capacità di regolare la funzionalità gastrointestinale tra alimentazione e digiuno (Ott e Secor, 2007; Graf, 2011).

1.6 Comportamento

Il pitone reale si sposta secondo una locomozione rettilinea, grazie alle contrazioni simmetriche bilateralì che spingono il corpo in avanti facendo forza sulla superficie del suolo. Si tratta di un animale piuttosto schivo, che tende a rimanere nascosto per proteggersi dai predatori (McDonald, 1996; Sillman et al., 1999). Tra le strategie di difesa rientrano il mimetismo, la fuga, il morso ed un comportamento caratteristico detto *balling*. Si tratta di un atteggiamento che consiste nell’appallottolarsi con la testa al centro, formando una sorta di sfera (Fig. 1.7). Da questo comportamento deriva il nome di *Ball pyton*, con cui questa specie è nota soprattutto negli Stati Uniti (Bustard, 1969; De Vosjoli et al., 1995). Tra i predatori del pitone reale, oltre all’uomo, rientrano i grandi mammiferi carnivori ed alcuni rapaci. Inoltre, in Ghana sono stati osservati attacchi verso
esemplari di piccole e medie dimensioni da parte del cobra nero (*Naja nigricollis*) (Greene, 1997).

Fig. 1.7 Atteggiamento di *balling* mostrato sia da esemplari adulti (a, b) sia da soggetti di poche settimane (c).
1.7 Conservazione e legislazione

In Africa occidentale questa specie è uccisa dalla popolazione locale per la carne e la pelle. Il pericolo maggiore deriva però dal commercio internazionale. Ogni anno, infatti, da 30000 a 50000 esemplari vengono catturati ed esportati (Bartlett e Bartlett, 2000; Aubret et al., 2005). Attualmente la popolazione di pitoni reali è tuttavia abbastanza diffusa e numerosa da non destare preoccupazione (Auliya e Schmitz, 2010). La IUCN (International Union for the Conservation of Nature e Natural Resources) Red List of Threatened Species ha infatti classificato il pitone reale come specie Least Concern, ovvero non minacciata (Fig. 1.8).

La IUCN, fondata nel 1948, è attualmente la più antica e grande organizzazione ambientale a livello mondiale. Tra le sue priorità riconosce quella di influenzare, incoraggiare e assistere le società di tutto il mondo per conservare l'integrità e la diversità della natura e per assicurare che qualsiasi utilizzo delle risorse naturali sia equo ed ecologicamente sostenibile. Per il conseguimento di tali obiettivi è stata poi elaborata la “Lista rossa IUCN”, ossia un elenco di specie animali e vegetali presenti a livello mondiale, attribuite a determinate categorie di minaccia. Tale lista è considerata il più
autorevole e obiettivo sistema di classificazione delle specie a rischio di estinzione, si basa infatti su rigorosi criteri di valutazione del grado di minaccia cui sono esposte le migliaia di specie prese in considerazione. I dati utilizzati, inoltre, vengono costantemente raccolti ed aggiornati (Hosey et al., 2009).

Per il pitone reale è dunque fondamentale che il commercio sia attentamente monitorato e regolamentato. Ciò anche in considerazione del fatto che in un futuro prossimo, a causa del rapido sviluppo dell’agricoltura con un crescente impiego di prodotti chimici, il tasso di sopravvivenza in natura di questi animali potrebbe diminuire sensibilmente (Gorzula, et al., 1997).

Il pitone reale è stato considerato, inoltre, nel trattato internazionale Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), anche indicato come Convenzione di Washington (UN, 1973). Redatto presso Washington DC, USA, nel 1973, il CITES è entrato in vigore due anni dopo; interessa primariamente il commercio e, benché indirettamente, coinvolge anche la conservazione di specie animali e vegetali, circa 5000 e 28000, rispettivamente. L’impatto maggiore che il CITES ha sulla detenzione e la movimentazione delle specie coinvolte è dato dalla necessità di appositi certificati. L’Appendice I, in particolare, elenca le specie di piante ed animali per i quali è stato riconosciuto un maggior rischio di estinzione, la convenzione ne vieta pertanto lo scambio internazionale, ad eccezione dei casi in cui la finalità non sia commerciale, ad esempio per la ricerca scientifica. L’Appendice II elenca le specie che per ora non sono minacciate di estinzione, ma che possono diventarlo se il loro commercio non è strettamente controllato. Se le autorità competenti riconoscono che certe condizioni sono verificate, soprattutto che il commercio non sarà dannoso per la sopravvivenza della specie in natura, lo scambio internazionale di esemplari di specie dell’Appendice II può
dunque essere autorizzato, attraverso la concessione di una licenza di esportazione, importazione o di un certificato di riesportazione a seconda della tipologia di scambio.

L’Appendice III, infine, elenca determinate specie su richiesta di una delle parti che necessita della collaborazione di altri Paesi per evitare uno sfruttamento non sostenibile od illegale delle specie stesse.

In Europa il trattato è stato interamente recepito attraverso il Reg. CE 338/97 e l’eventuale trasgressione dello stesso comporta conseguenze penali (Hosey et al., 2009). In Italia la convenzione è stata ratificata e resa esecutiva mediante la Legge n.874 del 19 dicembre 1975. La suddetta normativa europea ha esteso inoltre l’applicazione delle disposizioni previste dalla Convenzione di Washington anche ad alcune specie autoctone, prevedendo prescrizioni ancora più restrittive. Le specie a rischio di estinzione sono state suddivise in 4 Allegati, che in parte riprendono le appendici previste dal trattato internazionale, in particolare si distinguono l’Allegato A, B, C e D. Il primo comprendente specie il cui commercio è vietato, vi rientrano tutte quelle incluse nell’Appendice I CITES accanto ad alcune specie dell’Appendice II. Nell’Allegato B sono invece incluse specie il cui commercio è regolamentato, elenca le rimanenti specie dell’Appendice II. Il terzo allegato riporta le specie incluse nell’Appendice III della Convenzione di Washington, prevedendone il controllo commerciale solo se provenienti da Paesi che ne abbiano limitato il prelievo in natura. L’Allegato D, infine, elenca specie soprattutto vegetali il cui commercio è monitorato al fine di verificare se sia opportuno il loro inserimento in un regime di protezione (Hosey et al., 2009).

Il pitone reale, in particolare, è inserito nell’appendice II del CITES e conseguentemente nell’allegato B del Regolamento UE del 1996. Ogni esemplare detenuto deve perciò essere accompagnato da un certificato che ne attesti la presenza al di fuori del suo habitat.
naturale. In particolare, qualora un soggetto non sia nato nell’Unione Europea sulla ricevuta o atto di cessione occorre sia riportato un codice relativo all'importazione dell'animale in questione, oltre al nome della specie ed al numero di animali ceduti. Se invece un esemplare è nato all’interno dell’Unione Europea, è sufficiente una fattura/scontrino o una dichiarazione di cessione su cui sarà indicato il numero di protocollo o gli estremi della denuncia di nascita al Corpo forestale (Regolamento CE 865/2006). Inoltre, in caso di riproduzione di pitoni reali, è necessario denunciarne la nascita entro 10 giorni al Corpo Forestale, che fornirà poi uno specifico numero di protocollo valido per tutti i soggetti nati (art. 8-bis Legge 150/92). In vista di una riduzione dell’esportazione di esemplari dal loro ambiente naturale, è dunque fondamentale migliorare ed innovare le strategie di riproduzione in cattività (Auliya e Schmitz, 2010).
CAPITOLO 2: GESTIONE SANITARIA DELL’ALLEVAMENTO

2.1 Quarantena

Sviluppare un idoneo piano di quarantena è il primo e più importante passo per la prevenzione delle patologie in allevamento. Gli ofidi vengono spesso movimentati tra gli allevamenti senza un appropriato periodo di isolamento, e questo è infatti il principale motivo di diffusione di patologie tra diversi siti (Stahl, 2001).

Ogni nuovo soggetto introdotto in allevamento, deve essere pertanto sottoposto ad un periodo di quarantena. Sarebbe opportuno disporre di due distinte aree di quarantena, una destinata ai soggetti appena acquisiti e l’altra per la convalescenza di eventuali esemplari patologici già presenti in allevamento. Il protocollo standard per i nuovi animali prevede di mantenere l’esemplare in isolamento per un periodo compreso tra i 60 ed i 90 giorni, durante cui sarà tenuto sotto osservazione (De Vosjoli et al., 1995; Stahl, 2002; Sutherland, 2009). Esistono patologie, tuttavia, che per manifestarsi richiedono un maggiore intervallo di tempo, come la Inclusion body disease nei boidi. Pertanto, un periodo di quarantena compreso tra 6 e 12 mesi sarebbe consigliato (Stahl, 2001; Mader, 2006). Durante la quarantena è importante controllare che l’animale si alimenti regolarmente e produca feci ben formate, che non mostri sintomi respiratori o di altra natura e che non sia infestato da parassiti esterni, in particolare acari e zecche. Inoltre è
necessario un esame copro microscopico per la valutazione di endoparassiti, quali nematodi e cestodi. Quando possibile, un ulteriore controllo degli animali è rappresentato dal test sierologico per valutare l’esposizione a determinati patogeni, ad esempio il virus noto come *Ophidian paramyxovirus* (OPMV). Un esemplare sieropositivo non dovrebbe infatti essere introdotto in un allevamento sieronegativo (Schumacher, 1996; Jacobson, 2000; Stahl, 2001). Le procedure di alimentazione e pulizia dell’area destinata alla quarantena vengono realizzate per ultime ed ogni materiale impiegato è poi sottoposto ad accurata disinfezione (De Vosjoli *et al*., 1995; Sutherland, 2009).

2.2 Stabulazione

Il sistema più diffuso per la stabulazione degli animali in allevamento è il *rack-system*. Questo è costituito da un telaio di supporto su cui sono disposte le teche o *rack*, generalmente rappresentate da vasche di plastica prive di coperchio, che scorrono avanti e indietro, come cassetti, per consentire con facilità le operazioni di alimentazione e pulizia (Mader, 2006; Sutherland, 2009). Ogni vasca funge da coperchio per la vasca sottostante, in modo tale da impedire la fuoriuscita dei serpenti. Si tratta di un sistema molto funzionale, che permette di mantenere numerosi esemplari in uno spazio relativamente contenuto. Il materiale del telaio di supporto può essere rappresentato da metallo o plastica ABS. Il primo offre maggiore robustezza, ma la plastica è sicuramente più economica e più versatile. La disposizione dei rack, inoltre, può variare; possono infatti essere organizzati su un unico livello, oppure su più livelli, secondo un sistema a torre (Sutherland, 2009) (Fig. 2.1, 2.2).
Fig. 2.1 Esempio di *rack* per la stabulazione dei pitoni reali in allevamento

Fig. 2.2 Altra tipologia di *rack* per la stabulazione dei pitoni reali
Le dimensioni del singolo rack devono essere tali da ospitare sia gli arricchimenti sia l’animale, permettendogli movimenti agevoli. Generalmente si consigliano vasche con: lunghezza 90.4 cm, larghezza 45.7 cm ed altezza pari a 30.5 cm (Sutherland, 2009). A seconda della collocazione geografica dell’allevamento, deve poi essere presa in considerazione la normativa locale sul benessere animale che, in certi casi, indica in modo molto preciso le dimensioni minime delle vasche stesse. Nel caso specifico della Regione Emilia Romagna, ad esempio, devono essere rispettati la legge regionale del 17 Febbraio 2005, n. 5 “Norme a tutela del benessere animale” e la relativa norma con le indicazioni tecniche per l’attuazione della legge stessa. Secondo tale normativa un singolo rack non può ospitare più di due esemplari della medesima specie. Inoltre, la lunghezza minima del contenitore deve essere pari al 66% della lunghezza massima dell’animale; le dimensioni minime non possono comunque essere inferiori a 60 x 40 cm come base e 35 cm di altezza (Legge Regionale 5/2005; Delibera Di Giunta Regionale 394/2006). Le dimensioni della teca sono fondamentali per il benessere dell’animale. È infatti importante tenere sempre presente l’etologia di questa specie, ovvero la tendenza a trascorrere la maggior parte del tempo in tane sotterranee. Nel caso in cui il pitone sia stabulato in un rack di dimensioni troppo grandi, talvolta può smettere di alimentarsi. In tal caso, è necessario ricorrere ad una teca di dimensioni inferiori oppure procurare al soggetto un adeguato nascondiglio, in modo tale da ridurre lo stress (Mader, 2006; Sutherland, 2009). Come substrato, possono essere utilizzati vari materiali. Tra i più diffusi figurano la carta di giornale, la carta dentellata kraft ed il truciolato di pioppo. La lettiera in carta è facilmente reperibile, economica e semplice da rimuovere e smaltire. Il truciolato, però, offre il vantaggio di poter rimuovere solo la lettiera sporca, senza la necessità di dover cambiare tutto il substrato (operazione comunque fatta, ma con cadenza
meno frequente). Il truciolato sporco, infatti, cambia colore e consistenza, permettendo un rapido riconoscimento delle zone contaminate (De Vosjoli et al., 1995; Sutherland, 2009). Devono invece essere evitati materiali quali sabbia, ghiaia per acquari, lettiere a base di pannocchia, prodotti di legno di cedro e alcuni prodotti derivati dal legno di pino. La sabbia, in particolare, può avere un’azione abrasiva sulle scaglie ventrali del serpente e, se ingerita, può causare blocco intestinale. Analogamente, anche la lettiere di pannocchia e la ghiaia da acquario possono essere responsabili di problemi gastrointestinali. Le resine di cedro e pino sono invece possibili cause di difficoltà respiratoria nel pitone reale (Sutherland, 2009).

2.3 Arricchimenti

Un primo importante arricchimento per il pitone reale, è rappresentato dalla vaschetta per l’acqua. Generalmente viene utilizzato un contenitore in ceramica o plastica, sufficientemente robusto da non essere rovesciato dall’animale. Le dimensioni sono variabili, ma preferibilmente devono essere tali da contenere completamente il corpo del serpente (Mader, 2006; Sutherland, 2009) (Fig. 2.3). L’acqua deve essere regolarmente cambiata ed il contenitore pulito. Prima della muta è normale vedere il pitone immerso per lunghi periodi (Fig. 2.4), ma tale comportamento può essere determinato anche da motivi differenti. Alcuni esemplari, ad esempio, in assenza di un adeguato nascondiglio tendono ad utilizzare la vaschetta dell’acqua come tana. In caso di infestazione da acari, inoltre, l’animale si presenta spesso completamente in acqua ed alcuni parassiti possono essere evidenziati sul fondo della vasca (De Vosjoli et al., 1995; Mader, 2006). Infine, anche se la temperatura ambientale è troppo elevata e l’umidità bassa il tempo di
permanenza dell’esemplare all’interno della vaschetta può aumentare notevolmente. In caso il pitone sia spesso in acqua e non sia prossimo alla muta, perciò, è fondamentale considerare temperatura ed umidità della stanza, l’eventuale presenza di parassiti nonché lo stato di benessere dell’animale (Sutherland, 2009).

Fig. 2.3 Arricchimento: vaschetta dell’acqua.

Fig. 2.4 Esemplare in muta, completamente all’interno della vaschetta dell’acqua.
Oltre alla vaschetta dell’acqua, un altro arricchimento importante soprattutto nel caso in cui si utilizzino ampie teche trasparenti, è costituito da un adeguato nascondiglio. Questo è importante perché permette di rispettare l’etologia del pitone reale, abituato a rimanere per gran parte del tempo in tane sotterranee, diminuendo lo stress e creando così le premesse per una buona crescita e qualità di vita in allevamento (Sutherland, 2009).

Esistono numerose tipologie di tane, dalle più elaborate a semplici nascondigli, le caratteristiche fondamentali sono però rappresentate dalla facilità di pulizia e dalle dimensioni. La tana dovrà essere infatti abbastanza grande da permettere all’animale di nascondersi completamente, ma al contempo sufficientemente piccola per dare al serpente un senso di protezione (De Vosjoli et al., 1995; Sutherland, 2009).

2.4 Temperatura

Un’adeguata temperatura è requisito essenziale per un buon allevamento. Il pitone deve infatti essere mantenuto ad una temperatura ottimale perché possa digerire i pasti (Sutherland, 2009). Esistono diversi metodi per riscaldare le singole teche, quali rocce e tappetini, benché le prime siano sconsigliate. Le rocce infatti, non riscaldando l’aria della teca, richiedono un contatto prolungato con il corpo dell’animale per mantenerne la temperatura corporea idonea, causando spesso l’insorgere di bruciature (Sutherland, 2009). I tappetini vengono invece posti sotto la teca e collegati ad un reostato, in modo tale da regolare la temperatura della teca stessa in base alla temperatura ambiente. Le singole teche devono inoltre essere provviste di un termostato per controllare i suddetti elementi riscaldanti. In generale, è importante che vi sia una buona ventilazione ed un
certo gradiente di temperatura nel singolo rack (De Vosjoli et al., 1995; Stahl, 2002; Sutherland, 2009).

Per quanto riguarda gli esemplari adulti e subadulti, la temperatura nel punto più caldo della teca deve essere tra i 29.4°C ed i 32.2°C, tra i 25 ed i 29 °C quella invece dell’aria ambientale (Sutherland, 2009). Il comportamento del serpente è un importante indice dell’adeguatezza della temperatura (Sutherland, 2009). Se infatti l’animale passa la maggior parte del tempo nella vaschetta dell’acqua, potrebbe essere segno di eccessivo calore; al contrario, la temperatura nella teca potrebbe essere troppo bassa qualora il soggetto non si discosti quasi mai dalla zona più calda. Data l’importanza di questo parametro, il controllo del corretto funzionamento dei dispositivi riscaldanti e della temperatura delle singole teche deve essere eseguito quotidianamente (De Vosjoli et al., 1995; Sutherland, 2009).

2.5 Umidità

Come la temperatura, anche l’umidità è un parametro fondamentale per la buona salute del pitone reale allevato in cattività. Una corretta umidità è infatti necessaria per la muta del pitone; d’altra parte livelli eccessivi comporterebbero l’insorgere di patologie cutanee, oltre che la comparsa di muffa all’interno del rack (Sutherland, 2009). È dunque necessario trovare un equilibrio tra umidità e ventilazione. Un tasso di umidità compreso tra 50 e 70% è generalmente idoneo per il pitone reale (Sutherland, 2009).
2.6 Illuminazione

Nel caso del pitone reale non è necessaria un’illuminazione a spettro completo, mentre è importante la regolarità del ciclo illuminazione/buio (De Vosjoli et al., 1995; Sutherland, 2009). In natura, le ore di luce che questi animali hanno a disposizione sono circa 12 per la maggior parte dell’anno. Anche in condizioni di cattività, generalmente si cerca dunque di riproporre la medesima situazione, con cicli di 12 ore di luce e 12 di buio, 12:12 L/D. Esiste tuttavia una certa variabilità, alcuni Autori suggeriscono infatti un’illuminazione caratterizzata da 15 ore di luce in estate e 9 ore di luce in inverno (Stahl, 2002; Sutherland, 2009).

2.7 Igiene

Una buona igiene della teca è fondamentale. Alcuni substrati permettono una pulizia quotidiana a spot, in particolare nel caso del truciolo. Una pulizia completa, con rimozione dell’intera lettiera è tuttavia necessaria con frequenza mensile (Mader, 2006; Sutherland, 2009). In particolare, si procede ad un’accurata disinfezione della teca (con soluzioni a base di candeggina o mediante disinfettanti appositi per la stabulazione dei rettili), poi accuratamente sciacquata ed asciugata (De Vosjoli et al., 1995; Sutherland, 2009). Allo stesso modo, si procede poi alla disinfezione degli arricchimenti presenti nel rack. Inoltre, è importante controllare che l’animale abbia sempre a disposizione acqua pulita (Mader, 2006; Sutherland, 2009).
2.8 Alimentazione

I pitoni reali mantenuti in allevamento vengono alimentati con topi e ratti; talvolta gli animali riconoscono e si abituano ad un singolo tipo di alimento, rifiutando l’altro (Sutherland, 2009). Un aspetto fondamentale è rappresentato dalle dimensioni della preda. Se queste sono troppo piccole, infatti, l’animale non riceverà l’apporto nutritivo necessario. Ciò accade anche in caso vengano proposte prede eccessivamente grandi, generalmente non attaccate dal pitone oppure assunte per poi essere rigurgitate. Quest’ultima eventualità può essere pericolosa per la salute dell’animale, oltre che potenziale causa di un successivo rifiuto dell’alimento (De Vosjoli et al., 1995; Sutherland, 2009).

I pitoni neonati si cibano essenzialmente di topi con peso compreso tra 5 gr e 15 gr (5 – 18 giorni), solo raramente di topi più piccoli, a meno che non si tratti di neonati particolarmente piccoli, come nel caso di ofidi gemelli (Sutherland, 2009). Gli esemplari adulti possono ricevere sia topi che ratti adulti, con corrispondenza a circa il 10% del proprio peso. In molti casi è possibile abituare i pitoni reali ad alimentarsi di prede scongelate o uccise da poco. Secondo alcuni Autori questa variante sarebbe da preferire rispetto ai roditori vivi in quanto permette di ridurre il rischio di ferite inferte al pitone da parte della preda, ma soprattutto poiché permette di reperire un’adeguata e costante quantità di alimento in aree dove può essere difficile ottenere regolarmente prede vive (De Vosjoli et al., 1995; Sutherland, 2009). I morsi dei roditori possono essere molto pericolosi e perfino letali per un serpente, nel caso si ricorra a prede vive è dunque fondamentale non lasciare troppo a lungo il roditore nel rack. In ogno caso, è bene ricorrere a roditori acquistati ed evitare di proporre al pitone topi o ratti selvatici, eventuale veicolo di tossici e parassiti (De Vosjoli et al., 1995; Sutherland, 2009).
Affinché un serpente si cibi di prede morte sono necessari diversi stimoli, in particolare: calore, movimento e stimoli olfattivi. Pertanto è opportuno presentare all’animale la preda adeguatamente scaldata e avvalendosi di pinze. Una volta scongelato e scaldato il roditore, lo si deve proporre immediatamente all’ofide, così da evitare la crescita batterica (Sutherland, 2009).

La frequenza con cui alimentare i pitoni reali è piuttosto variabile tra gli allevamenti. I neonati vengono generalmente alimentati spesso, ogni 4-5 giorni, per promuovere una rapida crescita; per quanto riguarda gli adulti, non ci sono precisi riferimenti in letteratura. Generalmente gli allevatori offrono il pasto ogni 3 settimane, considerando che un pitone riceva una preda pari a circa il 10% del proprio peso. Indipendentemente dall’età del soggetto e dalla frequenza di alimentazione, è importante non manipolare l’esemplare per le 24 ore successive al pasto; ciò potrebbe infatti favorire il rigurgito. È stato inoltre osservato che anche un disturbo appena precedente la somministrazione del pasto può essere deleterio. Pulire la teca o maneggiare il soggetto in questo frangente determina talvolta un rifiuto del cibo (De Vosjoli et al., 1995; Sutherland, 2009). Anche una scorretta temperatura potrebbe compromettere l’alimentazione dell’esemplare, così come la presenza di stati patologici, tra i più frequenti quelli su base parassitaria. Ci sono anche circostanze in cui fisiologicamente i pitoni sospendono la propria alimentazione, in particolare durante la muta e l’accoppiamento. Nel caso in cui un esemplare non si alimenti per mesi, si ricorre all’alimentazione forzata (De Vosjoli et al., 1995; Mader, 2006; Sutherland, 2009).
2.9 Muta

Diverse volte all’anno, il pitone reale esegue la muta mano a mano che procede l’accrescimento. Questo fenomeno avviene con maggiore frequenza per i giovani esemplari in rapida crescita, mentre ad intervalli di tempo maggiori nel caso di soggetti adulti (Mader, 2006; Sutherland, 2009).

La muta si realizza completamente nell’arco di due settimane, e coinvolge l’intera cute del serpente. All’inizio del processo, la faccia ventrale del pitone assume una tonalità rosata, successivamente la cute appare opaca e gli occhi assumono un aspetto appannato (Fig. 2.5). Poco dopo la cute inizia a staccarsi. Una muta corretta prevede il distacco dell’intera cute dell’esemplare, in una singola porzione o meno; quando invece alcuni lembi di cute rimangono adesi al corpo, la muta non sta avvenendo in modo adeguato (De Vosjoli et al., 1995; Sutherland, 2009).

Quest’ultimo è un comune sintomo di scarsa idratazione o presenza di umidità insufficiente. In tale caso è quindi importante rimuovere delicatamente i lembi di cute interessati; in particolare è fondamentale un accurato controllo di occhi, speroni e punta della coda. Quest’ultima può infatti essere interessata da una banda di cute, avvolta a costituire una sorta di laccio, causando problemi seri sino alla necrosi, se non prontamente rimosso (Mader, 2006; Sutherland, 2009).
Fig. 2.5 Tipiche caratteristiche di un esemplare in muta: cute dall’aspetto opaco (a) e occhi opacizzati (b).
2.10 Registrazione dati

Per una corretta gestione dell’allevamento, è fondamentale tenere un banca dati costantemente aggiornata relativamente ad ogni esemplare (Stahl, 2002; Sutherland, 2009). Tra le informazioni più importanti figurano:

- Data di acquisizione dell’animale e provenienza dello stesso
- Età
- Genetica
- Data e natura dei pasti
- Data delle mute
- Peso
- Eventuali condizioni patologiche e relative terapie
- Accoppiamenti
- Data delle deposizioni e numero di uova/Slug deposte
CAPITOLO 3: RIPRODUZIONE

3.1 Cenni di anatomia e fisiologia

Gli oﬁdi presentano due ovaie, di forma allungata, site nella parte caudale della cavità celomatica, in particolare in prossimità del pancreas e cranialmente rispetto ai reni. La gonade destra è spesso più craniale rispetto alla controlaterale. Nel caso del pitone reale le ovaie sono collegate con i rispettivi ovidutti, i quali sboccano poi nella cloaca (urodeo) attraverso una papilla (Fig. 3.1 a) (Fox, 1977; Mader, 2006). In alcune specie, al contrario, ovaio ed ovidutto sinistri sono assenti. È il caso ad esempio delle specie appartenenti ai generi Typhlops e Leptotyphlos (Jacobson, 2007). In prossimità della cloaca, gli ovidutti mostrano strutture particolari, dette ricettacoli seminali, deputate alla conservazione del seme. Come nel caso dei sauri, anche per gli oﬁdi di sesso femminile la cloaca termina con un unico fondo cieco, per l’assenza di emipeni e relative tasche (Mader, 2006).

Il maschio presenta invece due testicoli, caratterizzati da forma ellissoidale e dalla presenza di pliche trasversali sulla superficie. Sono posti nel terzo caudale della cavità celomatica, cranialmente ai reni; il destro è leggermente più craniale del sinistro. Le dimensioni sono piuttosto variabili in base al periodo riproduttivo. Ciascun testicolo è in rapporto con relativo epididimo, di aspetto cerebroide e colorazione chiara. I dotti deferenti, poi, dagli epididimi si portano in cloaca, sboccando a livello di urodeo mediante una papilla (Fig. 3.1 b). Gli oﬁdi sono provvisti di due emipeni, ciascuno sito all’interno

Gli ofidi comprendono sia specie ovipare, come pitoni e alcuni colubri, sia ovovivipare, quali boa e vipere (Frye, 1991; Stahl, 2002; Mader, 2006). Il pitone reale si colloca dunque tra le specie ovipare, ovvero che depongono uova dotate di guscio. In questi animali si distinguono, ad oggi, due fasi dette previtellogenesi e vitellogenesi (Stahl, 2002; Mader, 2006). Nella prima fase i follicoli maturano a livello di ovaio. Durante la vitellogenesi, poi, gli estrogeni stimolano il fegato a trasformare i lipidi in vitellogenina,
riversata poi nel circolo sanguigno e successivamente depositata a livello dei follicoli, il cui colore muta da bianco a giallo e la cui dimensione aumenta da 10 a 100 volte (Zug, 1993) (Fig. 3.2). In questa fase il fegato aumenta notevolmente il proprio volume ed assume una colorazione giallastra. Le riserve di calcio, inoltre, rivestono un ruolo fondamentale e la calcemia generalmente aumenta in corrispondenza della vitellogenesi. Successivamente all’ovulazione, i nutrienti si concentrano nel follicolo, che diviene poi un vero e proprio uovo con la formazione del guscio (Mader, 2006).

Fig. 3.2 Particolare delle ovaie di un ofide. Si nota l'importante differenza in termini di dimensione, colore e posizione tra l'ovaio durante il periodo di riposo (A - frecce) e l'ovaio durante l'ovulazione (B).
La consistenza del guscio è variabile a seconda della specie di rettile coinvolta, è infatti flessibile nel caso dei serpenti, così come per la maggior parte delle lucertole ed in qualche specie di tartaruga, mentre è più rigida per i coccodrilli, la maggior parte dei cheloni e nel caso di numerosi gechi (Mader, 2006). Al contrario, l’ovoviviparità è caratterizzata dalla ritenzione delle uova all’interno del corpo della femmina, fino alla nascita della progenie. Nelle specie ovovivipare gli ovidutti mostrano una zona maggiormente ispessita e muscolosa che permette di mantenere le uova fino al raggiungimento del completo sviluppo embrionale (Frye, 1981). Può essere considerata una strategia evolutiva per alcune specie che, in caso di condizioni climatiche sfavorevoli ritengono appunto le uova. Un esempio di diide ovoviviparo è dato dal serpente *Thyphlops bibronii*. Alcuni rettili sono invece vivipari, ovvero con embrioni che si sviluppano all’interno del corpo della madre e la presenza di una placenta. Rientrano in questo gruppo, ad esempio, gli scinchi del genere *Mabuya* (Mader, 2006). La partenogenesi, infine, è una modalità di riproduzione asessuata, caratterizzata dallo sviluppo dell’uovo fecondo in assenza dell’accoppiamento col maschio. Circa trenta specie di lucertole ed alcune specie di ofidi si riproducono secondo questa modalità. *Cnemidophorus uniparens*, *C. velox* e *C. teselatus* ad esempio alternano la partenogenesi alla riproduzione sessuata, a seconda della disponibilità del maschio (Wright e Lowe, 1967; Wright, 1993). Alcuni Autori hanno valutato i livelli sierici degli ormoni sessuali di certe specie di ofidi. Gli studi presenti in letteratura hanno preso in considerazione soprattutto animali selvatici, riscontrando spesso un evidente variabilità stagionale, ma anche animali mantenuti in cattività (Taylor et al., 2004; Schuett et al., 2006; Tumkiratiwong et al., 2012). Nel caso del serpente a sonagli (*Crotalus atrox*), ad esempio, considerando il ciclo riproduttivo durante un anno, le femmine non riproduttive – che non hanno deposto –
mostrano bassi e costanti livelli di 17β-estradiolo e progesterone durante tutto l’anno; al contrario, le femmine riproduttive – che hanno deposto una o più uova - presentano un importante incremento del 17β-estradiolo durante lo sviluppo dei follicoli in aprile e maggio, il livello di progesterone è invece stato caratterizzato da un notevole incremento in giugno, in corrispondenza dell’ovulazione, per poi diminuire prima della deposizione in agosto (Taylor et al., 2004). I livelli plasmatici di estradiolo mostrano un aumento in corrispondenza dell’accoppiamento e dello sviluppo dei follicoli anche nel caso delle femmine di cobra monocolo (Naja kaouthia) e di cascavel (Crotalus durissus terrificus); al contrario, nel crotalo del pacifico settentrionale (Crotalus oreganus) questo ormone non ha evidenziato aumenti significativi in corrispondenza di particolari fasi del ciclo riproduttivo (Almeida-Santos et al., 2004; Lind et al., 2010; Tumkiratiwong et al., 2012). Alcuni Autori hanno dimostrato, inoltre, la presenza di livelli sierici significativamente più alti di progesterone durante la gestazione e subito dopo la deposizione in femmine di cascavel (Crotalus durissus terrificus), oltre che, come accennato, in esemplari di serpente giarrettiera terricolo (Thamnophis elegans) e di vipera (Vipera aspis), rispetto ai livelli riscontrati durante lo sviluppo follicolare (Highfill e Mead, 1975; Naulleau e Fleury, 1990; Bonnet et al., 2001; Almeida-Santos et al., 2004). Risultati analoghi sono stati rinvenuti relativamente a femmine di mocassino acquatico (Agkistrodon piscivorus) (Graham et al., 2011). Attualmente, in letteratura non sono invece riportati studi relativi alla valutazione degli steroidi sessuali nel pitone reale.
3.2 Sessaggio

A differenza dei boa e di altri pitoni, per quanto riguarda il pitone reale non è possibile effettuare il sessaggio in base alla dimensione degli speroni, ovvero i residui degli arti degli ofidi ancestrali. Sia i maschi che le femmine presentano infatti gli speroni cloacali, che possono essere sottili ed allungati, oppure più corti e tozzi, indipendentemente dal sesso dell’animale (DeNardo, 1996; Sutherland, 2009). Queste strutture si trovano ai lati della cloaca e talvolta nel maschio adulto possono presentarsi consumati, o addirittura assenti, a causa di un eccesso di cute ritenuta durante la muta, arrotolatasi attorno agli speroni. Sebbene raramente, gli speroni possono staccarsi anche durante l’accoppiamento (DeNardo, 1996; Sutherland, 2009).

I pitoni adulti sono generalmente sessati mediante sondaggio cloacale. In particolare, una sonda chirurgica sterile viene inserita lateralmente della cloaca, all’altezza dei diverticoli (Laszlo, 1975) (Fig. 3.3).

![Fig. 3.3 Specilli per sondaggio cloacale negli ofidi. La punta è smussa per evitare di lesionare gli emipeni durante il sondaggio.](image)
Nel caso dei maschi, la sonda procede cranio-caudalmente per una profondità corrispondente a circa 8-10 scaglie; se si tratta di un esemplare di sesso femminile, la sonda entra mediamente per 4 scaglie caudalmente alla cloaca per poi incontrare resistenza, data dal fondo del diverticolo (Gabrisch e Zwart, 1992; Sutherland, 2009). Per quanto riguarda invece gli esemplari neonati, il sessaggio viene eseguito generalmente attraverso estroflessione manuale degli emipeni, procedura nota come popping (Gabrisch e Zwart, 1992; DeNardo, 1996; Sutherland, 2009). Si esegue applicando una leggera pressione digitale all’altezza dell’apertura cloacale, ossia in corrispondenza dell’apice della borsa contenente gli emipeni. Nel caso di esemplari di sesso maschile si osserverà l’estroflessione degli emipeni, mentre qualora si tratti di una femmina si provocherà l’eversione delle papille oviduttali. Se correttamente eseguita, tale tecnica mostra un’accuratezza del 100% (Frye, 1991; Gabrisch e Zwart, 1992; DeNardo, 1996; Sutherland, 2009).

Un’ulteriore metodica che può essere impiegata per la determinazione del sesso negli osfidi, è rappresentata dall’ecografia. Si impiega in caso di animali con diametro corporeo superiore a 3 mm, ricorrendo a sonde lineari con frequenza di 7,5 – 10 MHz. Nel maschio permette la buona valutazione di testicoli ed emipeni. Nella femmina adulta si evidenziano ovaie e follicoli, tuttavia non è possibile la valutazione delle gonadi immature (Bigliardi et al., 2003; Gnudi et al., 2009).
3.3 Esame obiettivo generale e particolare

Prima di inserire un esemplare nel gruppo dei riproduttori, è importante effettuare un esame obiettivo, sia generale che particolare. Innanzitutto, si procede con una valutazione fisica dei singoli animali, con approccio cranio-caudale, valutando:

- Occhi: la vista è un senso importante per la riproduzione degli ofidi. Molti serpenti infatti sfruttano gli stimoli visivi per il corteggiamento e l’accoppiamento.
- Cavità orale e narici: anche l’olfatto è importante per il comportamento riproduttivo. In particolare, attraverso l’organo vomeronasale o organo di Jacobson, molti rettili rilevano i segnali chimici nell'ambiente. Pertanto, patologie respiratorie o stomatiti possono compromettere il successo riproduttivo (Stahl, 2002).
- Addome: la palpazione addominale è importante per valutare la presenza di adeguate riserve adipose, nonché l’eventuale permanenza di follicoli e uova.
- Apparato muscoloscheletrico: la massa muscolare è utile per valutare le condizioni generali del serpente. Gli esemplari con scarsa muscolatura, e quindi meno forza, non saranno immediatamente idonei per la riproduzione.
- Cloaca: la valutazione della cloaca è estremamente importante. Stati patologici quali infiammazioni ed occlusione da feci o urati, possono ridurre sensibilmente il successo riproduttivo. In casi sospetti, può essere utile anche una valutazione endoscopica. Quando possibile, è bene considerare anche gli emipeni. In particolare, si verifica l’eventuale presenza di ostruzione, legata all’accumulo di materiale ghiandolare, errata muta, o materiale seminale (Stahl, 2002).
3.4 Principali patologie riproduttive

3.4.1 Morte embrionale

La morte di embrioni perfettamente formati prima della schiusa è una delle più frequenti patologie riproduttive riscontrate nella clinica dei rettili (Stahl, 2002). È una patologia ad eziologia multifattoriale; in particolare, tra le principali cause rientrano:

- **Temperatura scorretta.** La temperatura di incubazione gioca un ruolo rilevante sul corretto sviluppo e sulla sopravvivenza dell’embrione. Inoltre, non solo il valore assoluto della temperatura, ma anche la rapidità con cui si verifica l’escursione termica nel tempo incide sulle performance riproduttive delle specie ovipare. Variazioni repentine possono infatti portare a morte l’embrione che non riesce a contrastare gli effetti dello stress termico cui è sottoposto (Innis, 2004).

- **Umidità inadeguata.** Le uova del pitone reale sono provviste di un guscio sottile, sono pertanto più sensibili ad eventuali sbalzi di umidità. Per una determinata specie, infatti, maggiore è lo spessore del guscio, minore sarà la suscettibilità alle variazioni di umidità (Highfield, 1990).

- **Insufficienti scambi gassosi.** Durante lo sviluppo dell’embrione all’interno dell’uovo, si assiste ad un marcato consumo di ossigeno parallelamente ad un aumento della concentrazione di anidride carbonica. Sebbene questa rarefazione di ossigeno sia lo stimolo fondamentale per la schiusa, alcuni Autori ritengono che possa essere una delle cause dei decessi embrionali, soprattutto nel caso di uova incubate artificialmente. Diversi studi hanno dimostrato come la temperatura d’incubazione giochi un ruolo determinante sugli scambi gassosi (Deeming e
Ferguson, 1991; Kam e Lilliwhite, 1994). Hanno infatti evidenziato che nella maggior parte delle uova incubate ad una temperatura di 32° C gli embrioni presentano un consumo di ossigeno maggiore rispetto a quelli incubati a 27° C. Una temperatura di incubazione superiore a quella fisiologica dunque indebolisce gli embrioni, rendendoli maggiormente sensibili all’ipossia (Kam e Lilliwhite, 1994).

- **Iponeutrizione.** Le riserve nutritive dell’embrione sono costituite esclusivamente da quelle immagazzinate nel tuorlo. Se la madre è sottoalimentata o comunque non riesce ad apportare la giusta quantità di vitamine, acido folico e altri nutrienti, aumenta drammaticamente la probabilità che sopraggiunga la morte per la prole. In particolare, un macroelemento che deve essere somministrato alla madre durante la gravidanza in quantità adeguate è il calcio. Una sua carenza comporta severe difficoltà nel sintetizzare il tuorlo e deficit di calcificazione del guscio, compromettendo il normale sviluppo del feto e predisponendolo ad un grave stress. La malnutrizione della madre è perciò una causa che deve sempre essere valutata ed indagata nei casi di morte precoce dell’embrione (Packard et al., 1992).

- **Errata ovodeposizione.** Le uova dei rettili sono più sensibili agli spostamenti rispetto a quelle degli uccelli. Un cambiamento di posizione influenza infatti sulla vitalità embrionale riducendo la capacità di schiusa e provocando eventuali danni alle strutture fetali. In particolare, una rotazione energica può determinare la rottura delle membrane del corion e dell’allantoide stirando e occludendo i vasi sanguigni, interrompendo così la nutrizione del feto. Altro effetto imputabile alla rotazione è lo spostamento del tuorlo, che andrebbe a schiacciare con il suo peso...
l’embrione stesso. Anche vibrazioni eccessive, inoltre, possono comportare le stesse conseguenze di una rotazione (Ewert, 1979; Ross e Marzec, 1990).

- **Cause infettive.** Le infezioni non sono molto comuni, ma sono comunque cause da considerare in una diagnosi differenziale. Possono derivare da salpingiti, contaminazioni cloacali oppure dall’ambiente circostante. Non sono tuttavia riportati patogeni specifici causa di mortalità embrionale nei rettili (Ross e Marzec, 1990).

- **Cause iatrogene.** Errate manualità o scarsa delicatezza nel maneggiare le uova possono provocare traumi e morte embrionale (Ross e Marzec, 1990; Stahl, 2002).

- **Altre cause.** Accumulo di tossine ed effetti collaterali da farmaci possono essere ulteriori cause di morte embrionale. In questi casi, tuttavia, la morte degli embrioni è tardiva (Ross e Marzec, 1990; Stahl, 2002).

Vista la grande varietà di cause che possono condurre a morte gli embrioni, la diagnosi presenta un grado di difficoltà abbastanza elevato. L’anamnesi diviene pertanto un mezzo estremamente importante e deve essere precisa ed accurata. La necroscopia e gli esami istopatologici sono inoltre sempre raccomandati. È auspicabile anche eseguire esami batteriologici e tossicologici. La prevenzione risulta comunque l’arma migliore per contrastare queste evenienze (DeNardo, 1996; Stahl, 2002).

3.4.2 Distocia

Nei rettili, la distocia comprende tutte quelle situazioni in cui si ha una mancata espulsione e deposizione del prodotto del concepimento entro tempi fisiologici. Nel caso dei serpenti è piuttosto comune, e in particolare più frequente per le specie ovipare rispetto

Si parla di distocia ostruttiva quando è impedito il corretto passaggio delle uova lungo il tratto riproduttivo (Fig. 3.4).

Fig. 3.4 Caso di distocia ostruttiva in un esemplare di Lampropeltis triangulum sinaloe.
Si tratta invece di distocia non ostruttiva qualora le uova ritenute siano di dimensioni normali e la conformazione anatomica della madre. La distocia ostruttiva può essere provocata da problemi legati alla madre, quali malformazioni degli ovidutti, o presenza di masse che li comprimono; ma anche ad alterazioni delle uova stesse (Grain e Evans, 1984). Se invece la distocia è non ostruttiva, l’eziologia è da ricercare in cause comportamentali, ambientali e patologiche. Eventuali alterazioni del comportamento materno associate ad un inadeguato sito di deposizione, ad esempio, sono tra le cause più frequenti. Inoltre, patologie come infezioni pregresse, malattie sistemiche, malattie debilitanti, endocrinopatie e scompensi nell’equilibrio idro-salino inducono le madri ad abbandonare tutte le attività riproduttive favorendo la ritenzione delle uova, dovuta anche ad una perdita del tono muscolare (Gier et al., 1989; Tu e Hutchison, 1994). Non esistono sintomi specifici e patognomonici di distocia. La malattia diviene infatti evidente e conclamata solamente in presenza di complicazioni.

I sintomi riportati in letteratura comprendono: anoressia, letargia, inattività, scolo cloacale, ritenzione fecale, anuria, possibili prolassi. Anche in questo caso, l’anamnesi può fornire informazioni importanti per la diagnosi, associata alla diagnostica per immagini (DeNardo, 2006). Inoltre, nelle specie ovipare alla palpazione è spesso possibile percepire le uova ritenute lungo il terzo caudale del corpo (Stahl, 2002). Gli approcci terapeutici possibili sono vari a seconda della specie animale e della situazione. Il trattamento medico permette generalmente di risolvere i casi di distocia non ostruttiva. In particolare, prevede l’induzione dell ’espulsione delle uova ritenute mediante la somministrazione di ossitocina, ormone con effetto stimolante le contrazioni della muscolatura liscia del tratto genitale femminile (Stahl, 2002). In associazione alla somministrazione di fluidi, Beta-bloccanti e supplemento di calcio. In caso di distocia
ostruttiva, nonché qualora il trattamento farmacologico dovesse fallire o non fosse possibile, si deve ricorrere al trattamento chirurgico. In particolare, si effettua una salpingectomia o una ovario salpingectomia, con accesso paramediano a livello di linea alba (Lock, 2000; Thomas et al., 2002) (Fig. 3.5). Un ulteriore approccio chirurgico è rappresentato dall’ovocentesi, ovvero l’aspirazione del contenuto delle uova; valida ed efficace opzione nei casi in cui il trattamento farmacologico risulti fallace o l’intervento di salpingectomia sia impraticabile. Solitamente i residui di guscio vengono espulsi nelle ore seguenti alla procedura (Peters e Coote, 1977; Rosskopf e Woerpel, 1983; Stahl, 2002).

Fig. 3.5 Trattamento chirurgico di distocia ostruttiva in un esemplare di Python regius.
3.4.3 Prolasso di emipeni e ovidutti

Negli ofidi, così come nei sauri, gli emipeni possono prolassare dalle rispettive tasche; anche gli ovidutti, inoltre, possono a loro volta prolassare (Bennet, 1993; Lock, 2000). Gli emipeni prolassati si presentano come masse solide di tessuto senza lume e spesso edematose, che sporgono dalla cloaca. Gli ovidutti appaiono invece come strutture tubulari, con mucosa caratterizzata da striature longitudinali. In entrambi i casi, si riconoscono diverse possibili cause (Rosskopf et al., 1982; Bennet, 1993). Nell’eziologia del prolasso degli emipeni si annoverano infezioni, eventi traumatici, separazione forzata dalla femmina, costipazione, disfunzioni neurologiche e/o alterazioni muscolari del muscolo retrattore del pene, problematiche associate alla muta (Rosskopf et al., 1982). Le cause del prolasso degli ovidutti sono simili, in particolare le infezioni rivestono un ruolo fondamentale, accanto a traumi e masse in cavità celomatica. Inoltre, esistono fattori predisponenti, sia per il maschio che per la femmina, ovvero le malattie metaboliche debilitanti, quali ipocalcemia, disidratazione, obesità ed iperestrogenismo. Un intervento tempestivo, in ogni caso, è fondamentale per evitare complicazioni come congestione venosa e necrosi ischemica. Negli eventi acuti e non complicati, è possibile generalmente procedere con la riduzione manuale del prolasso, dopo un accurato lavaggio (Stahl, 2002). Qualora ciò non sia possibile, l’impiego di lubrificanti e pomate antibiotiche offre all’organo prolassato una adeguata protezione. I tessuti esposti possono presentarsi notevolmente dilatati. In questi casi, un agente igroscopico, come una soluzione di saccarosio concentrato, può favorire la riduzione del prolasso (Frye, 1974). Nel caso in cui, invece, l’organo sia già interessato da infezione e congestione venosa prolungata, con conseguente necrosi, si dovrà procedere con l’amputazione chirurgica. Gli emipeni, in particolare, sono gli organi che più facilmente vanno incontro a necrosi dopo il prolasso;
l’amputazione è generalmente ben tollerata dagli animali e l’urinazione non è compromessa. Qualora siano interessati gli ovidutti, si procede con una salpingopessi o, se necessario, con una ovariosalpingectomia. In quest’ultimo caso è fondamentale rimuovere attentamente tutto il tessuto ovarico in quanto eventuali residui potrebbero produrre tuorlo in cavità celomatica con conseguente celomite (Lock, 2000; Stahl, 2002; Bennet e Mader, 2006).

3.4.4 Anomalie del prodotto del concepimento

Il prodotto del concepimento può essere esposto a molteplici agenti dannosi, le cui conseguenze dipendono dal momento dello sviluppo in cui agiscono. Tra le malformazioni più frequentemente riscontrate nei rettili figurano: anomalie del tegumento, anomalie del carapace nei cheloni, displasia dell’apparato ioideo, mostri doppi, esostosi osteocartilaginee, anomalie oculari. Il periodo dello sviluppo embrionale, in particolare, è quello di maggior sensibilità all’azione degli agenti teratogeni, è infatti il periodo in cui si formano i foglietti embrionali primitivi e gli abbozzi degli organi (Jackson, 1985; Ross e Marzec, 1990). Negli ofidi, in particolare, sono stati riportati rari casi di embrioni gemellari (Fig. 3.6).

È possibile che embrioni gemelli completino il loro sviluppo e successivamente emergano dal guscio comune; quando tuttavia condividono il sacco vitellino, c’è una forte probabilità che fendano il guscio ai poli opposti. Quando ciò accade, i nascituri cercano di fuoriuscire in direzioni opposte, cosa impossibile a causa della condivisione del sacco vitellino e del cordone ombelicale (Jackson, 1985; Ross e Marzec, 1990). I piccoli
andranno quindi velocemente incontro ad esaurimento delle energie, seguito da morte certa se non prontamente individuati e separati (Jackson, 1985).

3.4.5 Celomite da uovo
Eventuali traumi a follicoli, uova ed ovidutti possono esitare nel rilascio in cavità celomatica del materiale normalmente contenuto in tali strutture, con conseguente celomite (Stahl, 2002). Anche una prolungata distocia può essere implicata nello sviluppo di celomite. In questo caso, infatti, alcune uova possono andare incontro a degenerazione con conseguente rottura e sviluppo di salpingite. L’infiammazione e le aderenze tra questi
tessuti degenerati, poi, impediscono la deposizione, e l’eventuale somministrazione di ossitocina potrebbe quindi esitare in torsione e rottura degli ovidutti. Come per la distocia, anche per la diagnosi di celomite da uovo l’anamnesi riveste un ruolo fondamentale, accanto ad esami ematici e diagnostica per immagini. Il trattamento è generalmente chirurgico, con rimozione dei tessuti patologici e, se necessario, dell’ovidotto coinvolto e dell’ovaio ipsilaterale (Lock, 2000; Stahl, 2002).

3.5 **Conditioning ed accoppiamento**

Come accennato, la maturità sessuale viene raggiunta in corrispondenza di un peso pari a circa 700 g per i maschi (generalmente in soggetti di 1-1,5 anni) e 1500 g per le femmine (2-2,5 anni d’età) (Sutherland, 2009). La capacità di una femmina, infatti, di produrre uova fertili è direttamente correlata alle riserve grasse dell’esemplare stesso. A questo punto, gli animali vengono sottoposti al cosidetto *conditioning*, ovvero una stimolazione del comportamento riproduttivo, nonché dello sviluppo follicolare. Ciò consiste soprattutto in un leggero abbassamento delle temperature qualche mese prima dell’accoppiamento previsto, in modo tale da simulare il lieve calo di temperatura che si verifica nell’Africa centro-occidentale. Ci sono diverse metodiche, generalmente la temperatura ambiente viene gradualmente ridotta a 28°C durante il giorno, e a 24°C di notte, abbassandola di circa 2°C ogni due giorni e lasciando comunque a disposizione dell’animale un punto con temperatura maggiore (29-31°C) (Rossi e Rossi, 2000; Stahl, 2002). Secondo altri Autori, tuttavia, nel caso di pitoni e boa è sufficiente una riduzione della temperatura solo durante la notte, con un abbassamento di 4.7 °C (Ross e Marzec,
1990; De Vosjoli et al., 1994; Stahl, 2002). Ciò è importante per preparare i soggetti all’accoppiamento che, in cattività, può realizzarsi durante tutto l’arco dell’anno. Si osserva tuttavia una maggiore tendenza a indurre la stagione riproduttiva da ottobre a marzo nell’emisfero settentrionale, mentre da maggio ad ottobre nell’emisfero meridionale (Sutherland, 2009). Nel primo caso, quindi, si procede con l’abbassamento della temperatura tra ottobre e dicembre, sino a febbraio, quando viene ristabilita una temperatura ambiente di 32-35 °C. Il calo della temperatura spesso comporta un rallentamento del metabolismo, con possibile riduzione della risposta immunitaria. È fondamentale quindi che i soggetti inseriti nel gruppo dei riproduttori siano in ottime condizioni fisiche. Nel contesto del conditioning, inoltre, alcuni Autori suggeriscono di modificare non solo la temperatura, ma anche il fotoperiodo (Stahl, 2002).

Un maschio riproduttore può essere impiegato per la fecondazione di più femmine, generalmente 5. I due esemplari vengono poi lasciati nella medesima teca fino all’accoppiamento, per poi essere nuovamente separati. In particolare, si assiste ad una fase di corteggiamento, in cui il maschio si strofina attorno alla femmina col il proprio terzo caudale. Se la femmina è recettiva, le code dei due esemplari appariranno arrotolate, fase in cui avviene l’accoppiamento vero e proprio, con l’apposizione delle cloache. Questa fase dura mediamente 24 ore. Nei giorni successivi i due esemplari possono poi essere nuovamente alloggiati nella stessa teca, in modo da favorire più accoppiamenti aumentando così la probabilità di fecondazione (Stahl, 2002; Sutherland, 2009).
3.6 Alimentazione dei soggetti riproduttori

Se la stagione riproduttiva viene impostata da ottobre-novembre a maggio, i riproduttori vengono regolarmente alimentati dalla tarda primavera all’autunno. Successivamente, molti soggetti mostrano una graduale riduzione dell’alimento assunto (Rossi e Rossi, 2000; Stahl, 2002). Nonostante l’abbassamento della temperatura, è tuttavia possibile alimentare il pitone reale anche durante la stagione riproduttiva, riducendo la dimensione delle prede (Sutherland, 2009). Sia i maschi che le femmine possono perdere peso in questa fase, è pertanto fondamentale tenere monitorati i riproduttori.

3.7 Fecondazione e gestazione

Le femmine adulte presentano follicoli durante tutto l’arco dell’anno, ma sono generalmente molto piccoli. Grazie all’aumento del peso corporeo nonché a fattori ambientali, questi vanno poi incontro a sviluppo. Una femmina può presentare follicoli di grandi dimensioni indipendentemente dall’esposizione al maschio (Sutherland, 2009). Tali strutture, però, andranno incontro a sviluppo solo in caso di fecondazione, altrimenti vengono riassorbite. Per il completo riassorbimento dei follicoli sono necessari mesi. In caso di accoppiamento, la femmina può conservare il materiale seminale per diversi mesi, prima della fecondazione. Tale fenomeno avviene in corrispondenza dell’ovulazione (che dura circa 24 ore) dopo la quale i follicoli proseguono il proprio sviluppo nell’ovidotto (Rossi e Rossi, 2000; Stahl, 2002). In corrispondenza dell’ovulazione, inoltre, il terzo caudale del corpo della femmina si presenta generalmente ingrossato, anche se esiste una certa variabilità tra soggetto e soggetto (Sutherland, 2009). A distanza di circa tre settimane dall’ovulazione, la maggior parte delle femmine va incontro alla muta pre-
deposizione, che precede mediamente di 30 giorni la deposizione delle uova. Sembra che quest’ultimo intervallo di tempo sia particolarmente influenzato dalla temperatura ambientale: si accorcia in caso di temperatura più alta, mentre si può allungare se più bassa (Sutherland, 2009).

3.8 Deposizione

Generalmente la femmina inizia a deporre le uova nel tardo pomeriggio o alla mattina presto, e il processo richiede diverse ore per essere completato. Solo raramente viene deposto un singolo uovo, seguito dalle altre solo alcuni giorni dopo (Sutherland, 2009). Durante la deposizione la femmina mostra spesso un comportamento aggressivo, ed è fondamentale minimizzare lo stress ambientale, per esempio evitando eventuali manipolazioni (Sutherland, 2009). In media vengono deposte 6 uova (con range tra 1-11) che rappresentano dal 7 al 65% del peso della femmina (Rossi e Rossi, 2000; Stahl, 2002).

3.9 Incubazione delle uova

Una volta deposte, le uova possono essere lasciate alla madre oppure incubate artificialmente. In caso di incubazione materna, la femmina non deve essere disturbata e le condizioni di temperatura ed umidità devono essere controllate. La madre rimane arrotolata attorno alle uova finchè queste non inizieranno a schiudersi, aumentando o allentando le proprie spire a seconda della temperatura delle uova. L’esemplare deve inoltre avere costantemente a disposizione acqua pulita. Durante la cova, i pitoni reali cessano di alimentarsi. Il tempo necessario per recuperare il peso corporeo idoneo per la
riproduzione è pertanto maggiore per questi soggetti, rispetto all’intervallo di tempo richiesto dalle femmine le cui uova sono state incubate artificialmente (Sutherland, 2009). Nel contesto di un allevamento, si ricorre generalmente all’impiego dell’incubatore (Fig. 3.7). Temperatura ed umidità devono essere costanti e controllate, tenendo presente che la temperatura all’interno crescerà man mano che le uova si avvicinano alla schiusa (Sutherland, 2009). In particolare, la temperatura deve essere tra 31.1 e 31.7 °C, e l’umidità prossima al 100% (Sutherland, 2009); per ogni uovo, ci si aspetta un incremento di peso compreso tra il 10 ed il 40 %. In tali condizioni, le uova di pitone reale schiudono in media 57 giorni dopo la deposizione, con range tra 53 e 60 giorni (Rossi e Rossi, 2000; Stahl, 2002). Una temperatura eccessiva può essere responsabile di deformità ossee nei neonati; se invece troppo bassa, spesso si rinvengono nelle uova feti morti, completamente formati. L’umidità è un parametro altrettanto fondamentale, se non idonea può infatti a sua volta essere motivo di mortalità embrionale (Stahl, 2002; Sutherland, 2009).

Le uova vengono alloggiate in un apposito contenitore su particolare substrato, che può essere rappresentato da perlite o da una miscela di perlite e vermiculite (una parte di perlite e due di vermiculite). Tale substrato deve avere il corretto grado di umidità, pertanto viene aggiunta acqua (una parte di acqua ogni cinque parti di substrato). Se le condizioni ambientali sono idonee, le uova di pitone reale generalmente iniziano a collassare circa due settimane prima della schiusa. In caso di scarsa umidità, invece, ciò accade in tempi più precoci (Sutherland, 2009).
Fig. 3.7 Distinte tipologie di incubatrici per uova.
Le uova fertili si presentano di colore bianco e poco più grandi di un uovo di gallina; non sono provviste di un guscio duro bensì sono cedevoli al tatto. Alla speratura sono inoltre ben visibili vasi ed embrione. La speratura è un passaggio fondamentale, prima di introdurre le uova nell’incubatore; capita infatti che alcune uova non contengano l’embrione, nonostante presentino una buona colorazione e una corretta taglia (Sutherland, 2009). Un’ulteriore possibilità è poi rappresentata dalla deposizione di uova non fertili dette slugs, caratterizzate da dimensioni ridotte e colorazione alterata (giallastra) rispetto alle uova fertili. Raramente si presentano anche uova con un polo non adeguatamente calcificato. Questa estremità è dunque più flessibile, di colore marrone e conferisce all’uovo una forma a lacrima. Tali uova possono essere incubate con le altre, qualora contengano un embrione, con l’accortezza di porre il polo non calcificato verso l’alto. I neonati derivanti da queste uova sono generalmente più piccoli rispetto ai fratelli, e dovranno perciò essere alimentati con prede di dimensioni ridotte (Sutherland, 2009). Qualora la superficie delle uova appaia irregolare, può essere presenta un’ipocalcificazione diffusa a tutto il guscio. Queste strutture presenteranno delle fossette sulla superficie durante l’incubazione, ma se il tasso di umidità è corretto, la schiusa non è compromessa. Durante il periodo di incubazione è inoltre importante tenere costantemente controllate le uova, in modo tale da rimuovere prontamente quelle non più vitali, individuabili grazie alla variazione di colore (che diviene verde-bluastra) o al precoce collasso del guscio (Sutherland, 2009).
3.10 Schiusa e gestione dei neonati

Prima di riuscire a rompere il guscio ed uscire, i nascituri spesso fanno diverse fessure nell’uovo. Per le uova deposte insieme, nell’arco di un giorno o due tutti i serpenti rompono il guscio, pur continuando a permanere all’interno dell’uovo ancora per almeno un giorno (Sutherland, 2009). In questa fase è importante non movimentare i neonati, impegnati ad assorbire la parte rimanente del vitello, non consumata durante lo sviluppo (Fig. 3.8). Tale processo è fondamentale poiché provvede al nutrimento dei neonati fino al loro primo pasto (Sutherland, 2009). I neonati devono poi essere separati, e stabulati in teche distinte. Ciò è importante per assicurarsi che si alimentino e per evitare fenomeni di cannibalismo, benché rari. La temperatura idonea si colloca tra 26.7 e 29.4 °C e, inoltre, in ciascuna teca deve essere presente una vaschetta con acqua pulita. (Sutherland, 2009).

Fig. 3.8 Pitoni reali al momento della schiusa.
I neonati vengono poi stabulati in rack dedicati. A circa 10 giorni dalla schiusa, i neonati vanno incontro alla prima muta e sono pronti per il primo pasto. Questo può essere costituito da topi o ratti di 2-3 giorni d’età (detti *pinky*) oppure di 10 giorni d’età (detti primo pelo o *fuzzy*). Qualora il pitone neonato rifiuti il cibo per due settimane, è necessario alimentarlo forzatamente (Sutherland, 2009). Generalmente, dopo uno o due pasti, inizierà ad alimentarsi autonomamente. Considerando che, come precedentemente detto, per evocare la risposta al cibo in un pitone reale sono necessari diversi stimoli, in particolare calore, movimento e odore, è opportuno che i primi pasti siano costituiti da prede vive, almeno fino a quando il neonato avrà dimostrato un’adeguata risposta di attacco verso la preda. In questa fase, è allora possibile passare all’alimentazione con prede congelate, opportunamente scaldate (Sutherland, 2009).
CAPITOLO 4: VALUTAZIONE DELL’ATTIVITÀ RIPRODUTTIVA FEMMINILE DEI RETTILI

L’attività veterinaria nel contesto dell’allevamento dei rettili si concretizza in un piano globale che comprende tutti gli aspetti di gestione degli animali, dall’alimentazione alle condizioni di stabulazione, dalla quarantena dei nuovi esemplari alla diagnosi e terapia di eventuali patologie. In particolare, un ruolo fondamentale è rivestito dalla corretta valutazione e gestione dell’attività riproduttiva delle femmine. Pertanto, visita e scelta dei riproduttori e della strategia riproduttiva, monitoraggio del ciclo riproduttivo nonché assistenza e controllo durante gestazione e deposizione rappresentano punti imperscindibili per la buona riuscita dell’allevamento stesso (Sykes, 2010). In particolare, monitorare adeguatamente lo stato riproduttivo delle femmine sia prima che durante la stagione riproduttiva può migliorare l’efficacia delle pratiche d’allevamento e gestione. Diviene dunque necessario disporre di tecniche affidabili per il monitoraggio della funzionalità gonadica di ciascun animale (Graham et al., 2001). La concentrazione degli steroidi sessuali circolanti è considerata l’indicatore più affidabile dell’attività delle gonadi, tuttavia la raccolta regolare di campioni di sangue, può essere difficile in esemplari non trattabili nonché notevole fonte di stress per gli stessi (Schwarzenberger et al., 1996; Graham et al., 2001; Dehnhard et al., 2008). In particolare, questo problema si presenta molto spesso nel caso di animali appartenenti a specie selvatiche e non convenzionali, compresi i rettili. In questi ultimi animali, infatti, la valutazione degli
ormoni sessuali in circolo è una metodologia utilizzata, ma considerando lo stress che comporta per gli esemplari, non si presta per una valutazione frequente dell’attività riproduttiva in soggetti sani (Touma e Palme, 2005; Al-Kindi et al., 2006; Ganesh e Yajurvedi, 2007; Brasfield et al., 2008).

Pertanto, negli ultimi anni sono stati messi a punto diversi metodi non invasivi per il monitoraggio della funzionalità ovarica in tali specie (Lasley e Kirkpatrick, 1991; Schwarzenberger et al., 1996; Brown et al., 1997). Nel caso in particolare dei rettili, una delle tecniche non invasive più utilizzate è l’ultrasonografia (Rivera, 2008; Stahlschmidt et al., 2011). Bisogna tuttavia considerare l’ingente presenza di notevoli differenze interspecifiche, da cui nasce la necessità di studi atti ad approfondire le conoscenze relative alla funzionalità riproduttiva delle singole specie, nonché allo sviluppo di nuove metodiche volte a minimizzare lo stress subito dagli esemplari.

4.1 Monitoraggio ecografico

L’ultrasonografia è una tecnica non invasiva, ampiamente impiegata per la valutazione dell’attività riproduttiva in medicina veterinaria, sia per quanto riguarda i mammiferi che i rettili (Wallace et al., 1992; Silverman, 1993; Schildger et al., 1994; Hanzen et al., 2000; Hernandez-Divers e Hernandez-Divers, 2001; Hochleitner e Hochleitner, 2004; Stetter, 2006; Kuchling, 2015). In particolare per i rettili, la valutazione ecografica delle gonadi femminili è stata ampiamente studiata nel caso dei cheloni (Casares et al., 1997; Hofmeyr, 2004; Manire et al., 2008; Chen et al., 2011; Kawazu et al., 2014), ma anche per sauri (Sainsbury e Gilic, 1991; Sacchi et al., 2012; Prades et al., 2013; Pimm et al., 2015) ed
alcune specie di ofidi (Isaza et al., 1993; Stahlschmidt et al., 2011; Schilliger et al., 2005; Snyder, 1999).

La palpazione è un metodo ampiamente utilizzato per valutare lo stato riproduttivo dei rettili e degli ofidi in particolare. Benchè in grado di fornire informazioni interessanti, risulta una tecnica rischiosa poiché potenzialmente traumatica ed appare inoltre particolarmente complicata da eseguire su esemplari di grandi dimensioni (Stahlschmidt et al., 2011). La radiografia richiede un paziente immobile, cosa che spesso rende necessaria la sedazione. Inoltre, i tessuti molli possono essere identificati e localizzati, ma non sono ben definiti (Isaza et al., 1993). Endoscopia e laparoscopia, benchè permettono la visualizzazione diretta degli organi interni, sono procedure invasive che necessitano di anestesia. Al contrario, l'ecografia permette una buona valutazione delle strutture interne anche non calcificate ed al contempo è una tecnica non invasiva che spesso richiede il solo contenimento manuale (Redrobe, 1997; Schilliger, 2010).

Per quanto riguarda l'attrezzatura, dipende molto dalle dimensioni del paziente: per rettili di piccola mole viene generalmente impiegata una sonda da 10 o 15 MHz, per esemplari di taglia media o grande si ricorre invece a sonde da 6 a 8 MHz. Nel caso di soggetti di dimensioni particolarmente grandi, quali tartarughe giganti o coccodrilli, sono impiegate sonde da 3,5 MHz (Hernandez-Divers, 2001; Silverman, 2006; Stetter, 2006). Nel caso di sauri ed ofidi, il tipo di trasduttore più impiegato è quello lineare. Al contrario, per i cheloni le sonde convex sono più utili, in quanto la finestra acustica (ascellare o prefemorale) è particolarmente ristretta (Schilliger, 2010).

Nella maggior parte dei casi è sufficiente il contenimento manuale. Qualora si debbano valutare esemplari aggressivi e pericolosi, oppure cheloni retratti nel carapace, può
tuttavia essere necessaria una blanda sedazione (Sainsbury e Gilic, 1991; Isaza et al., 1993; Schildger et al., 1994; Hochleitner e Hochleitner, 2004; Stetter, 2006).

Fatta eccezione per i cheloni, a causa del piastrone, la finestra migliore per la valutazione ecografica degli organi interni dei rettili è data da un approccio ventrale (Hernandez-Divers e Hernandez-Divers, 2001; Stetter, 2006; Schilliger, 2010). Per questo motivo, gli ofidi, analogamente a sauri e coccodrilli, possono essere posizionati sia in decubito dorsale che in decubito ventrale. In quest’ultimo caso ci si può avvalere di tavoli finestrati, oppure si può semplicemente appoggiare la sonda sul corpo dell’animale mantenuto sollevato. Nel caso in particolare dei serpenti, l’approccio ventro-laterale permette un’ottimale visualizzazione delle strutture ovariche nelle femmine (Hochleitner e Hochleitner, 2004; Schilliger, 2010).

Quando si esegue una valutazione ecografica sui rettili, è necessario tenere presenti alcuni possibili artefatti. In particolare, la barriera acustica rappresentata dalla cheratina sulle scaglie, la presenza di ossa ed aria (a livello polmonare ed intestinale, nonché al di sotto delle scaglie e dello strato vecchio di pelle durante la muta) sono i responsabili dei principali artefatti (Schilliger, 2010). Queste limitazioni possono effettivamente impedire l’ottimale penetrazione delle onde attraverso il corpo del paziente. Per minimizzare questi effetti, è dunque importante porre un abbondante strato di gel ecografico tra il corpo del rettile e la sonda. In alternativa, alcuni Autori suggeriscono di massimizzare il contatto con la sonda immergendo la parte da esaminare in acqua tiepida (Sainsbury e Gilic, 1991; Isaza et al., 1993; Hochleitner e Hochleitner, 2004; Stetter, 2006).

Come per le altre specie, anche l’esame ecografico dei rettili deve rispettare un protocollo standardizzato. Nel caso degli ofidi, con corpo lungo e sottile, la valutazione inizia a livello dell’area di proiezione cardiaca e termina all’altezza della cloaca. Nei sauri, si
valutano dapprima fegato e cistifelletta, seguiti da apparato digerente, reni, gonadi, vescica e cuore. Per i cheloni, il posizionamento della sonda presso la finestra acustica ascellare permette la visualizzazione di cuore, stomaco e fegato. Dalla finestra pre-femorale, si possono invece prendere in esame fegato, tratto digerente, vescica e gonadi (Sainsbury e Gilic, 1991; Isaza et al., 1993; Hochleitner e Hochleitner, 2004; Wilkinson et al., 2004; Stetter, 2006; Schilliger, 2010).

Considerando in particolare la valutazione ecografica delle gonadi femminili, sono state evidenziate alcune differenze interspecifiche. In ofidi e sauri, le ovaie inattive appaiono anecogene e di ridotte dimensioni, al contrario si presentano come strutture iperecogene nei cheloni. In letteratura, i follicoli ovarici provvisti di vitello sono identificati come strutture ecogene, prive dell’aspetto concentrico caratteristico invece delle uova calcificate. Queste ultime, possono mostrare un guscio più o meno iperecogeno a seconda del grado più o meno marcato di calcificazione. Nelle specie ovovivipare, inoltre, alcuni Autori hanno evidenziato ecograficamente le strutture embrionali ed i relativi movimenti (Sainsbury e Gilic, 1991; Isaza et al., 1993; Hernandez-Divers e Hernandez-Divers, 2001; Hochleitner e Hochleitner, 2004; Wilkinson et al., 2004; Stetter, 2006; Schilliger, 2010). Benchè siano state riscontrate analogie tra alcuni sauri, quali l’iguana verde ed i serpenti, in relazione alla morfologia ed alla topografia delle gonadi, l’elevato numero di specie di ofidi e la scarsa presenza di informazioni in letteratura circa un’accurata descrizione dell’aspetto ecografico delle strutture ovariche durante il ciclo riproduttivo, nonché relativamente all’esistenza di determinate fasi durante il ciclo stesso, rendono necessari ulteriori approfondimenti per le singole specie. L’accurata conoscenza dell’aspetto ultrasonografico delle strutture riproduttive femminili normali, è infatti importante anche per la diagnosi precoce di eventuali stati patologici, quali ritenzione ovarica o neoplasie
(Schilliger, 2010; Banzato et al., 2012). Alcuni Autori hanno valutato, ad esempio, l’aspetto ultrasonografico degli organi riproduttivi del pitone reticolato (*Python reticulatus*), riconoscendo i follicoli in vari stadi di sviluppo e le uova calcificate (Enriquez et al., 2011). In questa specie è stata sottolineata la potenzialità dell’ecografia come metodo diagnostico utile sia per evidenziare stati patologici, sia per il monitoraggio degli esemplari sani per poter individuare il momento ottimale per l’accoppiamento (Enriquez et al., 2011). Analogamente, nel caso del serpente a sonagli (*Crotalus atrox*) l’ultrasonografia è stata impiegata per valutare le modificazioni delle strutture riproduttive in modo da poterle confrontare con altri parametri riproduttivi, quali i profili ormonali o particolari manifestazioni comportamentali (Taylor e DeNardo, 2005; Stahlschmidt et al., 2011).

4.2 Monitoraggio ormonale

Gli ormoni steroidi regolano numerosi processi fisiologici nei vertebrati, tra cui crescita e riproduzione, ed il ruolo di tali ormoni in quest’ultimo caso è stato ampiamente studiato in diverse specie (Schatz e Palme, 2001; Taylor et al., 2004; Al-Kindi et al., 2006; Norris, 2007). Anche nei rettili gli steroidi sessuali sono regolatori integranti della componente fisiologica nonché comportamentale dell’attività riproduttiva. In particolare, in molte specie gli estrogeni (come il 17β-estradiolo) stimolano il comportamento sessuale e la vitellogenesi nelle femmine, mentre gli androgeni (testosterone) stimolano il comportamento sessuale e la spermatogenesi nei maschi (Norris, 2007). Il progesterone, sembra invece essere coinvolto nel mantenimento della gestazione, mostrando elevati livelli sierici in specie quali *Thamnophis elegans* e *Vipera aspis* (Highfill e Mead, 1975;
La valutazione degli steroidi sessuali fornisce informazioni fondamentali per la gestione riproduttiva di un gruppo di animali, come nel contesto di un allevamento. La variazione dei livelli di tali ormoni è infatti legata a fenomeni quali raggiungimento della maturità sessuale, gestazione, passaggio tra diverse fasi del ciclo riproduttivo (Kummrow et al., 2011).

Benché il rilevamento dei livelli sierici degli steroidi sessuali sia il metodo più diretto, il prelievo di campioni di sangue può rivelarsi difficoltoso in termini di accessi venosi nonché di stress per l’animale, soprattutto in caso di specie esotiche e selvatiche. Sono stati pertanto studiati metodi di rilevamento non invasivi, come monitoraggio ormonale da feci, urine e saliva, per un elevato numero di specie (Cooper et al., 1989; Vincent e Mitchel, 1992; Graham e Brown, 1996; Berkeley et al., 1997; Goymann et al., 1999; Harper e Austad, 2000; Wasser et al., 2000; Dehnhard et al., 2001; Hayssen et al., 2002; Morrow et al., 2002; Dehnhard et al., 2003; Ganswindt et al., 2003; Good et al., 2003; Touma et al., 2003; Turner et al., 2003; Hunt et al., 2004; Negrão et al., 2004; Gröschl, 2008; Hernandez et al., 2014). Nonostante la somiglianza nelle strutture molecolari degli ormoni steroidei gonadici di tutto il regno animale, esistono differenze specie-specifiche, perciò è importante realizzare studi appositi per una determinata specie in modo da ampliare ed approfondire le conoscenze in merito (Lasley e Kirkpatrick, 1991; Schwarzenberger et al., 1996; Touma e Palme, 2005).

Il monitoraggio endocrino con metodica non invasiva, mediante semplice raccolta di materiale fecale annulla gli effetti dello stress provocato da un particolare contenimento e permette un campionamento ripetibile ad intervalli frequenti e a lungo termine, con un ridotto effetto di eventuali fluttuazioni episodiche (Harper e Austad, 2000; Touma e
Palme 2005; Brasfield et al., 2008; Kummrow et al., 2011). La valutazione dei metaboliti fecali o urinari restituisce una misura integrata dei livelli di steroidi nel sangue per un periodo di tempo ed è utile per valutare le proporzioni relative e l’andamento dei metaboliti ormonali (Goymann, 2005). Il confronto diretto tra le concentrazioni di steroidi nel letto vascolare e dei metaboliti negli escreti può essere difficile e la variabilità della metodologia deve essere considerata per l'interpretazione; tuttavia, le correlazioni tra i livelli di ormoni nel siero e dei metaboliti fecali sono state dimostrate in diverse specie (Graham et al., 2001; Walker et al., 2002; Millspaugh e Washburn, 2004; Goymann, 2005; Kummrow et al., 2011).

Gli steroidi sessuali sono stati valutati in numerose specie di rettili, principalmente ricorrendo a campioni di plasma e siero (Moore et al., 1985; Amey e Whittier, 2000; Rhen et al., 2000; Bonnet et al., 2001; Edwards e Jones, 2001; Radder et al., 2001; Lovern e Wade, 2003; Al-Kindi et al., 2006; Ganesh e Yajurvedi, 2007). Vi sono tuttavia notevoli difficoltà legate all’esecuzione di prelievi ematici ripetuti ad intervalli frequenti da esemplari di piccole dimensioni o particolarmente sensibili allo stress, cosa che ha portato all’introduzione anche nell’ambito della medicina degli animali esotici di metodi non invasivi. Alcuni Autori, ad esempio, hanno monitorato la presenza dei metaboliti del corticosterone presenti nelle feci di esemplari di tartaruga scatola, Terrapene carolina, altri hanno invece analizzato i metaboliti degli ormoni steroidei in tartarughe, sauri e camaleonti (Atkins et al., 2002; Rittenhouse et al., 2005; Kummrow et al., 2011).

La metodologia d’analisi più comunemente impiegata è la tecnica del dosaggio radioimmunologico (RIA, Radio Immuno Assay) (Amey e Whittier, 2000; Edwards e Jones, 2001; Lovern e Wade 2003; Al-Kindi et al., 2006; Holmes e Alison, 2006; Heulin et al., 2008). Anche la tecnica immunoenzimatica (EIA, Enzyme Immuno Assay), che
elimina le difficoltà legate al ricorso a materiale radioattivo, è stata ampiamente utilizzata, con successo, in diverse specie (Graham et al., 2001; Schwarzenberger et al., 2004; Brasfield et al., 2008).

Per un ottimale impiego di queste metodologie basate su raccolta dei campioni con tecniche non invasive, è tuttavia importante considerare l’esistenza di alcuni fattori che potrebbero complicare l’interpretazione dei risultati. In uno studio, queste variabili devono quindi essere valutate, in modo da creare condizioni omogenee e idonee all’applicazione di questi metodi innovativi. Tra i principali fattori di variabilità rientrano quelli legati alle procedure di campionamento ed analisi, accanto ai fattori legati alle differenze interspecifiche (Millspaugh e Washburn, 2004), qui di seguito brevemente riportati:

- Identificazione, condizioni ambientali e tempistica di raccolta del campione: idealmente il campione di feci dovrebbe essere raccolto fresco, cioè entro circa due ore, e da un esemplare noto. Benché ciò sia semplice nel contesto di un allevamento, risulta più complicato negli studi svolti in natura, su specie selvatiche, quando un determinato campione potrebbe essere rinvenuto dopo giorni di esposizione agli agenti atmosferici. Precipitazioni abbondanti o elevate temperature potrebbero infatti falsare la valutazione dei metaboliti fecali degli steroidi (Terio et al., 2002; Washburn e Millspaugh, 2002).

- Trasporto e conservazione del campione: la manipolazione del campione potrebbe alterare la concentrazione dei metaboliti degli ormoni presenti nelle feci. Per ridurre l’attività microbica e minimizzare i problemi con l’immunireattività, è importante procedere al congelamento del campione raccolto in tempi brevi, con
successivo stoccaggio a -20°C, senza pretrattare il campione con alte temperature o agenti chimici (Khan et al., 2002; Terio et al., 2002; Lynch et al., 2003).

- Massa del campione: in certi casi, soprattutto quando si considerano animali di piccole dimensioni, è consigliabile che l’intera massa fecale costituisca il campione. Campioni eccessivamente esigui, infatti, possono falsare i risultati in quanto la concentrazione di metaboliti fecali degli ormoni steroidei appare proporzionalmente maggiore (Washburn et al., 2003; Tempel e Gutiérrez, 2004). In particolare, è consigliabile che la massa del campione non sia inferiore a 0.02 g - massa secca. In caso di necessità, è consigliabile piuttosto associare più campioni corrispondenti a un determinato periodo di tempo, in modo da fornire un campione rappresentativo per il suddetto periodo (Suedkamp Wells et al., 2003; Millspaugh e Washburn, 2004).

- Età, sesso e stato riproduttivo dei soggetti: l’età degli esemplari considerati, così come il sesso e lo stato riproduttivo degli stessi, sono variabili potenzialmente in grado di alterare i livelli circolanti di steroidi e di conseguenza i metaboliti fecali di tali ormoni. Per poter eseguire un confronto, dunque, sarebbe auspicabile prendere in esame soggetti di cui siano note tali caratteristiche (Kenagy e Place, 2000; Touma et al., 2003; Millspaugh e Washburn, 2004).

- Tempo trascorso in cattività: per le specie non convenzionali mantenute in cattività è importante considerare il periodo di acclimatazione necessario per l’adattamento degli esemplari ad un determinato ambiente; eventuali situazioni di stress legate ad un cambio di stabulazione possono infatti modificare i livelli basali di steroidi (Millspaugh e Washburn, 2004).
Dieta: la dieta è un ulteriore fattore di variabilità che può incidere sulla escrezione feca
de dei metaboliti degli ormoni steroidei. Per eliminare tale variabile ed eseguire un confronto più corretto, sarebbe opportuno che la dieta del gruppo di soggetti sperimentali fosse omogenea (Goldin et al., 1981, 1982; Millspaugh e Washburn, 2004).

I contributi in letteratura riguardo allo studio dei metaboliti fecali degli ormoni steroidei nei rettili sono ancora estremamente esigui, ed in particolare assenti per quanto riguarda gli ofidi. Tra le specie considerate rientrano il camaleonte velato (Chamaeleo calyptratus) e la lucertola chiazzata dalla lingua blu (Tiliqua nigrolutea). Quest’ultima è stata valutata in relazione al monitoraggio dell’attività riproduttiva del maschio, prendendo in esame la presenza di testosterone nelle feci (Atkins et al., 2002). Gli Autori che hanno studiato il camaleonte velato, invece, hanno considerato il ciclo riproduttivo femminile. In questa specie è stata evidenziata una corrispondenza significativa tra le concentrazioni di metaboliti fecali di 17β-estradiolo, progesterone e testosterone ed i livelli plasmatici degli stessi (Atkins et al., 2002). Ad oggi, non sono ancora riportati in letteratura studi riguardanti l’applicazione di questa tecnica di monitoraggio riproduttivo negli ofidi.
5.1 Obiettivi

L’allevamento dei rettili in cattività si sta diffondendo notevolmente in questi ultimi anni. La corretta gestione e valutazione dell’attività riproduttiva delle femmine assume pertanto sempre maggiore importanza nell’attività quotidiana medico-veterinaria svolta in allevamento (Graham et al., 2001; Sykes, 2010). In letteratura attualmente sono riportati alcuni studi relativi al monitoraggio del ciclo riproduttivo dei rettili, ma per quanto riguarda gli ofidi mantenuti in cattività le conoscenze sono ancora piuttosto esigue. Inoltre, considerando la particolare sensibilità delle specie non convenzionali allo stress, è importante studiare ed approfondire nuove tecniche poco o per nulla invasive per aumentare le conoscenze relative alla riproduzione di questi animali (Schwarzenberger et al., 1996; Dehnard et al., 2001; Dehnard et al., 2003; Dehnard et al., 2008).

Lo scopo del presente studio è pertanto quello di monitorare il ciclo riproduttivo di femmine di pitone reale (P. regius) allevate in cattività attraverso metodiche non invasive, in particolare ultrasonografia e dosaggio dei metaboliti fecali degli ormoni sessuali. Ad oggi in letteratura sono riportati solo alcuni studi relativi alla valutazione dei livelli plasmatici degli ormoni sessuali in altre specie di serpenti, soprattutto selvatici, ma nulla per quanto riguarda il pitone reale. Il dosaggio immunoenzimatico degli steroidi sessuali fecali, invece, non è stato valutato ancora per nessuna specie di ofidi.
5.2 Materiali e metodi

5.2.1 Area di Studio

Lo studio è stato condotto presso l’allevamento professionale MC Serpenti (Firenze, Italia) (Fig. 5.1).

La struttura conta oltre 1000 femmine adulte e circa 100 maschi adulti, con 10000 nascite all’anno. Le femmine in riproduzione sono tutte allevate in condizioni standardizzate, in termini di stabulazione, gestione e condizioni ambientali:

- **Rack**: tecne in plastica grandi abbastanza da permettere al serpente di termoregolarsi adeguatamente (80 x 40 x 20 cm);
- **Substrato**: trucioli di faggio depolverati, con il vantaggio di assorbire feghi, urati e relativi odori;
- **Vaschetta con acqua**: arricchimento presente in ogni teca, per dissetare l’ofiide e mantenere l’umidità idonea (Fig. 5.2);
- **Temperatura**: il calore è fornito dal basso e la temperatura viene mantenuta nel range ottimale di 31-32°C nella zona calda e 27-28°C in quella fredda. Un termostato con sonda posta all'interno della vasca permette di avere sempre la temperatura;
- **Umidità**: tra il 50% e il 60%, essenziale per evitare che il serpente si didrati e per favorire il distacco della muta.
- **Luce/buio**: In allevamento viene seguito un ciclo L/D (luce/buio) di 12:12.
Fig. 5.1 Allevamento professionale MC Serpenti - stanze dedicate alla stabulazione delle femmine in riproduzione (a,b).
Fig. 5.2 Esempio di rack con relativa vaschetta dell’acqua (a). Femmina riproduttrice stabulata nel proprio rack (b).
Ogni teca viene controllata e pulita quotidianamente, e analogamente si procede per la vaschetta dell’acqua. La rimozione e sostituzione totale del trucciolo viene eseguita invece con cadenza settimanale.

5.2.2 Soggetti sperimentali

Il presente studio ha coinvolto complessivamente 129 esemplari, tutte femmine adulte di pitone reale in riproduzione, con le seguenti caratteristiche (Fig. 5.3):

- Nate ed allevate in cattività
- Appartenenti a vari *morphs*
- Peso corporeo compreso tra 1,5 e 2 kg
- Alimentate ogni quattro giorni con ratti di allevamento decongelati di peso compreso tra 100 e 200 g, fino al momento dell’accoppiamento, poi le prede vengono comunque proposte ma con assunzione più variabile
- Stabulate singolarmente in rack

Tutti questi animali sono stati sottoposti a monitoraggio ecografico, tra questi è stato estratto casualmente un sottogruppo composto da 30 esemplari sottoposti anche a monitoraggio ormonale, con prelievo mensile di campioni di feci.
Fig. 5.3 Due esemplari coinvolti nello studio.
5.2.3 Raccolta dati

Gli animali coinvolti nello studio sono stati monitorati per un periodo complessivo di due anni, 2015 e 2016, quindi per due cicli riproduttivi. In particolare, i dati sono stati registrati quotidianamente e minuziosamente dagli allevatori stessi, mediante annotazione su apposite schede anamnestiche. Attraverso il monitoraggio ecografico delle femmine durante tutto l’arco dello studio sono stati così annotati e registrati i diametri follicolari durante il ciclo riproduttivo, i casi di riassorbimento follicolare, le date degli accoppiamenti, così come quelle delle deposizioni di uova fertili ed eventuali slugs.

5.2.4 Valutazione ecografica

Gli esemplari sono stati valutati ecograficamente con frequenza settimanale, direttamente in allevamento. Le ecografie sono state interamente realizzate con soggetti non sedati, ma semplicemente contenuti manualmente, ed in particolare mantenuti in decubito sternale appoggiati sul piano da visita (Fig. 5.4) o leggermente sollevati, per agevolare la valutazione sulla faccia ventrale (Fig. 5.5).

Dopo apposizione di un abbondante strato di gel ecografico, sono quindi state realizzate brevi valutazioni (5 minuti circa), per minimizzare lo stress dell’animale, appoggiando la sonda con orientamento trasversale per ottenere scansioni laterali e ventrali a livello del terzo medio e caudale del corpo, in accordo con Hochleitner e Hochleitner (2004) e Schilliger (2010). Per lo studio è stato utilizzato un ecografo portatile MyLab™ 30 Gold (Esaote, Genova, Italy) dotato di sonda lineare 533 settata a 10-12 MHz. Profondità e contrasto sono stati aggiustati per ottimizzare la visualizzazione delle strutture. Sono stati così valutati ovaie, follicoli, uova con vario grado di calcificazione in termini di
posizione, dimensioni ed ecogenicità, nonché le strutture embrionali per valutarne la vitalità attraverso Power Doppler.

Fig. 5.4 Valutazione ecografica delle strutture riproduttive di un soggetto mantenuto in appoggio.

Fig. 5.5 Valutazione ecografica delle strutture riproduttive di un soggetto, con approccio ventro-laterale mantenendo l’esemplare sollevato.
Tutti i dati ottenuti sono stati riportati in tabelle apposite, ciascuna relativa ad un singolo esemplare. In particolare, sono stati annotati per ciascuna sessione di ecografia la data dell’esame, il diametro follicolare maggiore espresso in mm, l’aspetto ecografico delle strutture osservate ed eventuali note aggiuntive (quali muta, accoppiamento e deposizione). I dati sono quindi stati riportati in un foglio Excel per la successiva elaborazione, con calcolo degli intervalli temporali, espressi in giorni, esistenti tra gli eventi riproduttivi più significativi: inizio dell’attività ovarica con sviluppo follicolare dopo il periodo di inattività, inserimento del maschio e accoppiamento, muta, deposizione di uova fertili e/o slugs. Inoltre, è stata valutata la crescita follicolare (mm/giorno) nei vari intervalli considerati, nonché l’aspetto ultrasonografico dei follicoli durante il ciclo.

5.2.5 Prelievo di campioni fecali

Durante il secondo ciclo riproduttivo, un sottogruppo di 30 animali è stato estratto casualmente dall’insieme dei soggetti sperimentali per il prelievo mensile di campioni di feci, con la finalità di valutare la presenza dei metaboliti fecali degli steroidi sessuali. I singoli campioni sono stati raccolti freschi (entro poche ore dalla defecazione) e prelevando l’intera massa fecale. Sono stati poi riposti in sacchetti di plastica, riportanti su etichetta l’annotazione dell’identificativo del soggetto e della data di raccolta. Sono stati inoltre classificati in base al momento del ciclo riproduttivo, individuato mediante i dati ecografici. Subito dopo la raccolta, i campioni sono stati stoccati in congelatore a -20°C sino al momento dell’analisi. Il dosaggio ormonale è stato eseguito entro sei mesi dalla raccolta del campione.
5.2.6 Dosaggio del 17β-estradiolo

Fase I: Estrazione degli ormoni steroidei (metodologia basata sul lavoro di Palme, 2005, modificato)

1. Essiccare i campioni da analizzare, ancora congelati, in stufa a 55°C per 48 h;
2. polverizzare minuziosamente ciascun campione essiccato tramite l’ausilio di un frullatore elettrico, con accurata pulizia dello strumento tra un campione ed il successivo per evitare cross-contaminazioni;
3. pesare due aliquote di 250 mg ciascuna. Deporre in congelatore il restante materiale polverizzato per ogni campione fecale, opportunamente identificato. Tale materiale viene conservato per rispondere all’eventuale esigenza di eseguire nuovamente l’analisi, ma anche per la potenziale realizzazione di nuove indagini;
4. mettere in provetta le due aliquote pesate e, sotto cappa, addizionare 1 mL di metanolo 80% (Sigma Aldrich, St. Louis, MO, USA). Su ciascuna provetta deve essere riportata l’identificazione del campione;
5. vortexare ciascuna provetta per 30 minuti e quindi centrifugare la sospensione a 500 g per 20 minuti.
6. Recuperare il surnatante (0,5 mL) e trasferirlo in una provetta da estrazione ed evaporare a 50° per 14 h

7. Dopo evaporazione conservare gli estratti essiccati a temperatura ambiente al buio per quindici giorni tappando ogni provetta etichettata con parafilm e stoccare in congelatore a -80° in vista delle successive analisi.

8. Un giorno prima dell’analisi, risospendere gli estratti secchi in 0,5 mL di metanolo 80% e diluire l’aliquota 1:10 in tampone assay (Arbor Assays®, Ann Arbor, MI, USA).

9. Vortexare la miscela e lasciare riposare 5 minuti. Ripetere l’operazione una seconda volta al fine di assicurare la completa solubilità degli steroidi.

Fase 2: Dosaggio degli ormoni steroidei

1. Preparazione dei reagenti per l’allestimento delle piastre di lettura, secondo protocollo DetectX®:

 - mantenere tutti i reagenti del kit ed i campioni a temperatura ambiente per almeno 30 minuti;
 - preparazione Assay Buffer: diluire 1:5 il concentrato aggiungendo una parte di concentrato a 4 parti di acqua deionizzata. Una volta diluita, la soluzione è stabile per 3 mesi alla temperatura di 4°C;
 - preparazione Wash Buffer: diluire 1:20 il concentrato aggiungendo una parte di concentrato a 19 parti di acqua deionizzata. Una volta diluita la soluzione è stabile per 3 mesi a temperatura ambiente;
preparazione standard: etichettare 5 provette dal n°1 al n°5. Pipettare 450 μL di *Assay Buffer* nella provetta n°1 e 250 μL nelle provette dalla n°2 alla n°5. La soluzione di estradiolo contiene un solvente organico, perciò è opportuno risciacquare la punta della pipetta parecchie volte per assicurare la completa liberazione. Addizionare con attenzione 50 μL della soluzione *stock* di estradiolo alla provetta n°1 e vortexare accuratamente. Prelevare 125 μL di soluzione di estradiolo dalla provetta n°1 e aggiungerla alla provetta n°2, quindi vortexare. Ripetere la diluizione per le successive provette, dalla n°3 alla n°5. La concentrazione dell’estradiolo nelle provette, dalla n°1 alla n°5, sarà rispettivamente 10000, 2500, 625, 156.25 e 39.06 pg/mL (Tab. 5.1). Utilizzare tutti i preparati entro le due ore dalla preparazione.

Tabella 5.1 Protocollo allestimento piastre (gli standard sono indicati come “Std”, sigla seguita dal numero corrispondente a standard).

<table>
<thead>
<tr>
<th></th>
<th>Std 1</th>
<th>Std 2</th>
<th>Std 3</th>
<th>Std 4</th>
<th>Std 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay Buffer Volume (μL)</td>
<td>450</td>
<td>375</td>
<td>375</td>
<td>375</td>
<td>375</td>
</tr>
<tr>
<td>Addition</td>
<td>Stock</td>
<td>Std 1</td>
<td>Std 2</td>
<td>Std 3</td>
<td>Std 4</td>
</tr>
<tr>
<td>Volum of Addition (μL)</td>
<td>50</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>Final Conc (pg/mL)</td>
<td>10000</td>
<td>2500</td>
<td>625</td>
<td>156.25</td>
<td>39.06</td>
</tr>
</tbody>
</table>

2. Esecuzione protocollo del test:

- preparare la piastra per analisi in doppio con NSB (*no specific binding*), standard e campioni;
pipettare 50 μL di campione o standard all’interno dei pozzi di
-
pipettare 75 μL di Assay Buffer all’interno di pozzi di
-
pipettare 50 μL di Assay Buffer all’interno di pozzi di
-
addizionare 25 μL di estradiolo coniugato DetectX® in ciascun pozzo di
-
addizionare 25 μL di anticorpo dell’estradiolo DetectX® in ciascun pozzo, eccetto quello NSB di
-
mescolare delicatamente in modo da assicurare un’deguata miscelazione dei reagenti. Coprire la piastra con la pellicola protettiva e agitare a temperatura ambiente per 2 ore di
-
aspirare la piastra e lavarla 4 volte con 300 μL di Wash Buffer. Asciugare su carta assorbente di
-
addizionare 100 μL di substrato TMB in ciascun pozzo di
-
incubare la piastra a temperatura ambiente per circa 30 minuti, senza agitarla di
-
addizionare 50 μL di soluzione bloccante (stop solution) in ciascun pozzo di
-
leggere la densità ottica (utilizzo di lettore “Sirio S”) ad una lunghezza d’onda di 450 nm di
-
calcolare, infine, la concentrazione di progesterone presente in ciascun campione con il 4PLC software.
5.2.7 Dosaggio del progesterone

Il protocollo di analisi è suddiviso in due parti, la prima prevede l’estrazione del progesterone dal materiale fecale, la seconda consiste invece nella vera e propria determinazione della concentrazione ormonale, mediante metodica immunoenzimatica.

Fase 1: Estrazione degli ormoni steroidei (metodologia basata sul lavoro di Palme, 2005, modificato)

Questa fase è analoga alla Fase 1 descritta precedentemente per il dosaggio dell’estradiolo.

Fase 2: Dosaggio degli ormoni steroidei

1. Preparazione dei reagenti per l’allestimento delle piastre di lettura, secondo protocollo DetectX®:

 – mantenere tutti i reagenti del kit ed i campioni a temperatura ambiente per almeno 30 minuti;
- preparazione *Assay Buffer*: diluire 1:5 il concentrato aggiungendo una parte di concentrato a 4 parti di acqua deionizzata. Una volta diluita, la soluzione è stabile per 3 mesi alla temperatura di 4°C;

- preparazione *Wash Buffer*: diluire 1:20 il concentrato aggiungendo una parte di concentrato a 19 parti di acqua deionizzata. Una volta diluita la soluzione è stabile per 3 mesi a temperatura ambiente;

- preparazione standard: etichettare 7 provette dal n°1 al n°7. Pipettare 450 μL di *Assay Buffer* nella provetta n°1 e 250 μL nelle provette dalla n°2 alla n°7. La soluzione di progesterone contiene un solvente organico, perciò è opportuno risciacquare la punta della pipetta parecchie volte per assicurarne la completa liberazione. Addizionare con attenzione 50 μL della soluzione *stock* di progesterone alla provetta n°1 e vortexare accuratamente. Prelevare 250 μL di soluzione di progesterone dalla provetta n°1 e aggiungerla alla provetta n°2, quindi vortexare. Ripetere la diluizione per le successive provette, dalla n°3 alla n°7. La concentrazione del cortisolo nelle provette, dalla n°1 alla n°7, sarà rispettivamente 3200, 1600, 800, 400, 200, 100 e 50 pg/mL (Tab. 5.2). Utilizzare tutti i preparati entro le due ore dalla preparazione.

Tabella 5.2 Protocollo allestimento piastre (gli standard sono indicati come “Std”, sigla seguita dal numero corrispondente a standard).

<table>
<thead>
<tr>
<th></th>
<th>Std 1</th>
<th>Std 2</th>
<th>Std 3</th>
<th>Std 4</th>
<th>Std 5</th>
<th>Std 6</th>
<th>Std 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay Buffer Volume (μL)</td>
<td>450</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Addition</td>
<td>Stock</td>
<td>Std 1</td>
<td>Std 2</td>
<td>Std 3</td>
<td>Std 4</td>
<td>Std 5</td>
<td>Std 6</td>
</tr>
<tr>
<td>Volum of Addition (μL)</td>
<td>50</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Final Conc (pg/mL)</td>
<td>3200</td>
<td>1600</td>
<td>800</td>
<td>400</td>
<td>200</td>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>
2. Esecuzione protocollo del test:

- preparare la piastra per analisi in doppio con NSB (*no specific binding*), standard e campioni;
- pipettare 50 µL di campione o standard all’interno dei pozzetti;
- pipettare 75 µL di *Assay Buffer* all’interno di pozzetti NSB;
- pipettare 50 µL di *Assay Buffer* all’interno di pozzetti Bo (*maximum binding*);
- addizionare 25 µL di progesterone coniugato *DetectX®* in ciascun pozzetto;
- addizionare 25 µL dell’anticorpo del progesterone *DetectX®* in ciascun pozzetto, eccetto quello NSB;
- mescolare delicatamente in modo da assicurare un’adeguata miscelazione dei reagenti. Coprire la piastra con la pellicola protettiva e agitare a temperatura ambiente per 2 ore;
- aspirare la piastra e lavarla 4 volte con 300 µL di *Wash Buffer*. Asciugare su carta assorbente;
- addizionare 100 µL di substrato TMB in ciascun pozzetto;
- incubare la piastra a temperatura ambiente per circa 30 minuti, senza agitarla;
- addizionare 50 µL di soluzione bloccante (*stop solution*) in ciascun pozzetto;
- leggere la densità ottica (utilizzo di lettore “Sirio S”) ad una lunghezza d’onda di 450 nm;
– calcolare, infine, la concentrazione di progesterone presente in ciascun campione con il 4PLC software.

5.2.8 Validazione del test

Riproducibilità e ripetibilità del test

I coefficienti di variazione inter ed intra saggio sono stati inferiori al 10% per tutti i test. Tutti i campioni di feci sono stati analizzati con più diluizioni (1: 4, 1: 8, 1:16 e 1:32) per valutare il parallelismo con la curva standard (P < 0.05 per tutti i test). I tassi di recupero di P4 e E2 aggiunti a feci essiccate erano rispettivamente 94% e 72% (n = 6).

Sensibilità e reattività crociata

La sensibilità del test per P4 ed E2 è stata determinata misurando la quantità minima di ormone standard costantemente distinguibile dalla concentrazione zero di standard, e corrisponde rispettivamente a 19,4 pg / g di feci e 0,96 ng / g feci. L’anticorpo P4 utilizzato per quantificare il progesterone fecale, ha mostrato una reattività crociata del 100% con il progesterone, del 172% con il 3β-idrossi-progesterone, del 2,7% con l’11β-idrossi-progesterone, del 7% con il 5α-diidroprogesterone, inferiore allo 0,1% con il corticosterone e pari al 5,9% con il pregnenolone. L’anticorpo E2 ha cross-reagito al 100% con il 17β-estradiolo ed al 0,73% con l’estrone.
Validazione clinica

Idealmente, il profilo steroideo fecale dovrebbe essere validato attraverso la valutazione del profilo steroideo plasmatico per una determinata specie (Pryce et al., 1993). Ciò non è tuttavia sempre possibile, come nel caso di specie non convenzionali, particolarmente sensibili allo stress, o selvatiche, trattandosi di una metodica invasiva e quindi non semplicemente ripetibile ad intervalli regolari e frequenti su esemplari sani per finalità di monitoraggio (Dobeli et al., 1992; Casares, 1995; Atkins et al., 2002). Nel presente studio, è stata dunque eseguita una validazione clinica. In particolare, per ogni animale coinvolto sono stati osservati e registrati quotidianamente i comportamenti riproduttivi, quali accettazione del maschio e date di deposizione delle uova. Inoltre, lo stato riproduttivo degli animali è stato individuato attraverso indagine ultrasonografica. L’assenza di follicoli è stata identificata come inattività riproduttiva, mentre le fasi di sviluppo follicolare sono state associate alla visualizzazione ecografica di follicoli in vario stadio di sviluppo e con diverso grado di calcificazione (Schilliger, 2010; Enriquez et al., 2011; Kottwitz et al., 2016).

5.2.9 Analisi statistica

L’analisi statistica è stata condotta utilizzando il pacchetto software SPSS per Windows (versione 21.0; SPSS Inc., Chicago, IL), applicando la procedura Univariate del modello lineare generalizzato. In particolare, nella valutazione dei livelli ormonali nelle successive fasi del ciclo riproduttivo sono stati inseriti la fase come effetto fisso e l’individuo come effetto casuale.
5.3 Risultati

In base ai dati raccolti mediante anamnesi, osservazione comportamentale e valutazione ecografica, sono state individuate quattro fasi distinte del ciclo riproduttivo, indicate come segue:

- Fase anovulatoria
- Fase di transizione
- Follicologenesi
- Embriogenesi

Accanto ad esse è stata inoltre osservata un’ulteriore possibile fase del ciclo riproduttivo, qualora lo sviluppo follicolare non giunga a termine, indicata come Rgressione follicolare.

5.3.1 Valutazione ecografica e comportamentale

Per ciascuna fase sono state evidenziate determinate caratteristiche, attraverso la considerazione dei seguenti parametri:

- accettazione del maschio ed accoppiamento
- aspetto delle ovaie
- presenza di follicoli e relative caratteristiche (dimensione, ecogenicità)
- presenza di uova e relative caratteristiche (dimensione, ecogenicità)
- strutture embrionali e relativa vitalità
Fase Anovulatoria

La fase anovulatoria è caratterizzata da una situazione di quiescenza riproduttiva. Non si notano atteggiamenti comportamentali particolari; qualora maschio e femmina siano stabulati nel medesimo rack, la femmina ignora il compagno. Ecograficamente si osserva la presenza di piccoli follicoli (diametro < 5 mm) a livello ovarico, anecogeni con forma tondeggiante (Fig. 5.6 e 5.7).

Fig. 5.6 Scansione ecografica di ovaio di Pitone reale in fase anovulatoria. Si osservano pochi follicoli (frecce) a livello di stroma ovarico, anecogeni e di forma tondeggiante. Le barre sul margine laterale destro ed inferiore indicano 1 cm di distanza.
Fig. 5.7 Scansione ecografica di ovaio di Pitone reale in fase anovulatoria. Le barre sul margine laterale destro ed inferiore indicano 1 cm di distanza. a) Ovaio inattivo (ovale). b) ovaio con scarsa attività: pochi follicoli con diametro < 5 mm (frecce).
Fase di Transizione

La fase di transizione è caratterizzata dalla ripresa dell’attività ovarica. La femmina mostra maggiore appetito e verso il termine di questa fase alcuni esemplari iniziano ad accettare il maschio. Ecograficamente si osserva la presenza di follicoli più numerosi, spesso con disposizione “a catena” e con diametro compreso tra 5 e 10 mm. Inizialmente tondeggianti ed anecogeni, con l’aumento della dimensione mostrano spesso una maggiore ecogenicità periferica (Fig. 5.8, 5.9 e 5.10).

![Fig. 5.8 Scansione ecografica di ovaio di Pitone reale in fase di transizione. Si osservano numerosi follicoli (freccia), anecogeni e di forma tondeggianti. Le barre sul margine laterale destro ed inferiore indicano 1 cm di distanza.](image-url)
Fig. 5.9 Scansione ecografica di ovaio di Pitone reale in fase di transizione. Le barre sul margine laterale destro ed inferiore indicano 1 cm di distanza. a) Follicoli con diametro compreso tra 5 e 10 mm (linea tratteggiata), con disposizione a catena. b) follicoli disposti a catena di dimensioni variabili. I follicoli di diametro maggiore si collocano tuttavia tra i 5 e i 10 mm (frecce).
Fig. 5.10 Scansione ecografica di ovaio di Pitone reale in fase di transizione. Le barre sul margine laterale destro ed inferiore indicano 1 cm di distanza. a), b) Follicoli corrispondenti alla fase di transizione con aumento di ecogenicità periferica (frecce).
Follicologenesi

La fase di follicologenesi inizia con il raggiungimento di un diametro follicolare pari a 10 mm, evento che corrisponde all’accettazione del maschio da parte della femmina, con conseguente accoppiamento. Gli accoppiamenti proseguelono per alcuni giorni, in corrispondenza allo sviluppo follicolare. Inoltre, durante lo sviluppo follicolare la femmina predilige la zona fredda della teca, sostando spesso in acqua per abbassare la propria temperatura corporea. I follicoli presentano diametro crescente fino a 30 mm, e sono caratterizzati da ecogenicità variabile. Inizialmente alcuni follicoli si presentano uniformemente anecogeni, mentre altri presentano già una maggiore ecogenicità periferica (dalla precedente fase di transizione). Successivamente, è stata osservata una progressiva intensificazione dell’ecogenicità dell’area centrale dei follicoli (anecogena durante la transizione), riferibile all’organizzazione del vitello. In corrispondenza di tale aspetto dei pollicoli, in alcuni casi è stata riscontrata epatomegalia. Anche la porzione periferica dei follicoli diviene via via iperecogena, facendo assumere al follicolo un particolare aspetto concentrico a bersaglio (Fig. 5.11, 5.12, 5.13 e 5.14).

Fig. 5.11 Follicologenesi. Follicoli anecogeni numerosi, con disposizione a catena, corrispondenti al lato destro (ovale rosso) e sinistro (ovale giallo). Diametro compreso tra 10 e 30 mm (linea tratteggiata).
Fig. 5.12 Follicologenesi. Follicoli con iniziale formazione del vitello (linee tratteggiate). Alcuni con area anecogena periferica (a) (asterisco), altri con ecogenicità esterna più marcata (b) (freccce).
Fig. 5.13 Follicologenesi. a,b: Follicoli con caratteristico aspetto concentrico a bersaglio.
Fig. 5.14 Follicologenesi - Valutazione di un follicolo. (a) Vascolarizzazione assente; (b) misurazione diametro follicolare (tratteggio giallo); (c) misurazione area periferica con maggiore ecogenicità (tratteggio blu); (d) misurazione area iperecogena centrale – vitello (tratteggio rosso).
Embriogenesi

La fase di embriogenesi è caratterizzata dalla fine dell’accettazione del maschio da parte della femmina. Ecograficamente si osserva la presenza di strutture con diametro maggiore di 30 mm ed ecogenicità variabile; inizialmente si osserva una maggiore ecogenicità nelle zone più esterne, successivamente l’aspetto delle uova fertili diviene più omogeneo (Fig. 5.15 e 5.16). Con il precedere dello sviluppo, le uova appaiono caratterizzate da un doppio strato periferico, date più esternamente dal guscio calcificato esterno e da una membrana interna (Fig. 5.17). La fase termina con la deposizione; mediamente vengono deposte sei uova. Nonostante i follicoli che iniziano lo sviluppo siano molto numerosi, dunque, le strutture che poi procedono per arrivare sino alla deposizione sono meno numerose. Come punti salienti dell’analisi ecografica di questa fase sono stati riscontrati:

- valutazione e differenziazione precoce di uova fertili e slugs
- valutazione della vescicola embrionale e della vitalità embrionale

Già tre settimane prima della deposizione l’indagine ultrasonografica permette di differenziare le uova fertili dalle uova non fertili, o slugs. L’aspetto di queste ultime è infatti più irregolare, con ecogenicità non uniforme (Fig. 5.18, 5.19 e 5.20). Ecograficamente l’embrione è valutabile circa due settimane prima della deposizione (Fig. 5.21). Mediante Color Doppler è inoltre possibile valutarne la vitalità, mediante evidenziazione di vascolarizzazione e battito cardiaco. Avvicinandosi alla data della deposizione è possibile monitorare lo sviluppo dell’embrione seguendo l’aumento delle dimensioni e controllando la vascolarizzazione (Fig. 5.22, 5.23, 5.24 e 5.25).
Fig. 5.15 Follicoli durante la parte iniziale della fase di embriogenesi. Diametro follicolare maggiore > 30 mm (linee tratteggiate – b, c), forma ovale e aspetto ecografico ancora non uniforme, si osserva una zona centrale meno ecogena. Perifericamente non si osserva ancora la parete calcificata.
Fig. 5.16 Embriogenesi. Strutture (asterischi - a, b, c) con diametro maggiore > 30 mm (linea trattegiata - c), in fase più avanzata di sviluppo.
Fig. 5.17 Embriogenesi. Uova con guscio calcificato (frecce) e parete interna (teste di freccia).
Fig. 5.18 Embriogenesi – due settimane prima della deposizione. In uno stesso soggetto si notano tutte le uova simili come dimensioni ed aspetto ultrasonografico, ossia forma ovale e contenuto uniformemente ipercogeno (a,b). Un unico uovo si presenta invece dimensioni minori e contenuto ecograficamente irregolare (c). Alla deposizione sono state rinvenute 4 uova e 1 slug.
Fig. 5.19 Embriogenesi – tre settimane prima della deposizione. Già tre settimane prima della deposizione, in uno stesso soggetto la maggior parte delle uova si presenta simile: forma ovale e contenuto uniformemente iperecogeno (a). Alcune uova si differenziano, in quanto particolarmente disomogenee (b,c). Anche in questo caso, alla deposizione sono state rinvenute 7 uova e 3 slugs.
Fig. 5.20 Embriogenesi. Stesso esemplare valutato due mesi (a,b) e tre settimane (c,d) prima della deposizione.
a,b: non si distingue uova ferte e slugs.
c,d: le uova ferte si differenziano dalle slugs, grazie alla forma più regolare ed alla omogenea ipercogenicità del contenuto (a),
a fronte della maggiore disomogeneità delle slugs.
Il soggetto ha successivamente deposto 10 uova e 3 slugs.
Fig. 5.21 Embriogenesi. Ecografie di uova a tre settimane (a) ed a due settimane (b) dalla deposizione. a: non è ancora visibile la vescicola embrionale, si osserva una zona anecogena periferica che però non è caratterizzata da vascolarizzazione. Si tratta di una struttura compatibile con la camera d’aria. b: a due settimane dalla deposizione, si riconosce invece la vescicola embrionale, differenziabile dalla camera d’aria grazie alla presenza del flusso ematico, riconosciuto mediante Color Doppler.
Fig. 5.22 Embriogenesi – 11 giorni prima della deposizione. Valutazione di una vescicola embrionale mediante rilevamento del flusso ematico (a) e valutazione delle dimensioni (b). È ben riconoscibile l’aspetto a doppio strato della parete (frecce).
Fig. 5.23 Embriogenesi – una settimana prima della deposizione. Monitoraggio di una vescicola embrionale mediante rilevamento del flusso ematico (a) e valutazione delle dimensioni (b).
Fig. 5.24 Embriogenesi. A pochi giorni dalla deposizione, si può notare l’incremento delle dimensioni della vescicola embrionale (a). Flusso ematico rilevato attraverso Color Doppler (b).
Fig. 5.25 Embriogenesi – giorno antecedente la deposizione. Valutazione del battito cardiaco: immagine tratta da un filmato in B-mode, con individuazione del battito (a) e rilevamento mediante Pulsed-Wave (PW) Doppler (b).
Valutazione post-deposizione

Sono state eseguite anche alcune valutazioni successivamente alla deposizione. In particolare, il giorno stesso della deposizione si possono evidenziare alcune formazioni di aspetto tondeggiante con diametro di circa 1 cm, caratterizzate da iperecogenicità periferica e minore ecogenicità centrale. A 24 ore dalla deposizione, tali strutture non sono invece altrettanto ben identificabili (Fig. 5.26).

Trascorso un mese dalla deposizione, l’ovidutto non appare visibile; a livello ovarico si possono notare delle piccole formazioni anecogene, con diametro < 5 mm e forma tondeggiante, compatibili con la fase anovulatoria (Fig. 5.27).

Fig. 5.26 Valutazione ecografica dell’ovidutto il giorno stesso della deposizione (a,b) e il giorno successivo (c,d). a,b: A poche ore dalla deposizione si notano a livello di ovidutto alcune formazioni tondeggianti, caratterizzate da iperecogenicità periferica e ipoecogenicità centrale (frecce). Sono altresì presenti alcune raccolte di fluido anecogeno. c,d: ad un giorno di distanza dalla deposizione, le suddette strutture non sono chiaramente identificabili. L’ovidutto mostra ancora lieve raccolta fluida endoluminale.
Fig. 5.27 Ecografie realizzate ad un mese di distanza dalla deposizione. a,b,c: Lo stroma ovarico presenta piccole formazioni tondeggianti anecogene (diametro < 5mm, indicato dalla testa di freccia), corrispondenti alla fase anovulatoria (ovale giallo). d: aorta addominale (freccia).
Regressione follicolare

Talvolta il ciclo riproduttivo non giunge alla formazione di uova fertili ed alla loro deposizione. In certi casi, infatti, si assiste ad un crescente sviluppo follicolare sino alla fase di follicologenesi o embriogenesi, poi seguito da un processo di regressione dei follicoli stessi. Tale situazione rimane fisiologica nel momento in cui coinvolge soltanto una parte dei follicoli; ad ogni ciclo, la numerosità di questi ultimi durante transizione e follicologenesi è infatti apparsa notevolmente superiore al numero di uova poi effettivamente deposte, a testimoniare un fenomeno fisiologico di atresia follicolare. Questa regressione risulta invece anomala, o parafisiologica, nel momento in cui preclude il procedere dello sviluppo di tutti i follicoli, con conseguente ritorno alle fasi precedenti (anovulatoria o transizione) sino all’inizio del ciclo successivo. Ecograficamente, pertanto, si osserva un progressivo ritorno di follicoli giunti a dimensioni di oltre 10 mm, all’aspetto caratteristico delle fasi precedenti, con riduzione del diametro e variazione dell’ecogenicità (Fig. 5.28).
Fig. 5.28 Regressione follicolare. Il soggetto (ID: Candy) dopo aver raggiunto la fase di transizione (a) e quella di follicologenesi (b), ha mostrato una ridotta crescita dei follicoli, seguita da una riduzione delle dimensioni degli stessi (c). I follicoli sono regrediti, e l’esemplare è tornato alla fase anovulatoria (c), con assenza di significativa attività ovarica. Il soggetto mostrato solo successivamente una situazione di sviluppo follicolare, con una nuova fase di follicologenesi (e, f).
5.3.2 Durata delle singole fasi e crescita follicolare

I dati raccolti per ogni animale durante lo studio sono stati progressivamente inseriti in schede dedicate, annotando in particolare le date di inizio e fine delle singole fasi del ciclo riproduttivo (stabilite in base alla dimensione dei follicoli maggiori) ed i relativi diametri follicolari. I dati sono quindi stati elaborati per valutare la durata media delle fasi stesse e la crescita follicolare media. Nel contesto dell’embriogenesi, inoltre, sono stati considerati: muta, calcificazione, numero di uova e numero di slugs. Queste valutazioni sono state eseguite per entrambi i cicli riproduttivi considerati nello studio (Tab. 5.3).

Tabella 5.3 Durata media delle fasi riproduttive (giorni) e crescita follicolare media (mm/giorno).

<table>
<thead>
<tr>
<th>Ciclo</th>
<th>Fase anovulatoria (follicoli fino a 5 mm)</th>
<th>Fase di Transizione (follicoli 5 mm-10 mm)</th>
<th>Folicolenogenesi (follicoli 10 mm-30 mm)</th>
<th>Embriogenesi (da 30 mm alla deposizione)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Durata (g)</td>
<td>Crescita a follicoli (mm/g)</td>
<td>Durata (g)</td>
<td>Crescita a follicoli (mm/g)</td>
</tr>
<tr>
<td>I</td>
<td>162,29</td>
<td>0,03</td>
<td>55,39</td>
<td>0,12</td>
</tr>
<tr>
<td></td>
<td>32,06</td>
<td>0,01</td>
<td>30,95</td>
<td>0,09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ciclo</th>
<th>Fase anovulatoria (follicoli fino a 5 mm)</th>
<th>Fase di Transizione (follicoli 5 mm-10 mm)</th>
<th>Folicolenogenesi (follicoli 10 mm-30 mm)</th>
<th>Embriogenesi (da 30 mm alla deposizione)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Durata (g)</td>
<td>Crescita a follicoli (mm/g)</td>
<td>Durata (g)</td>
<td>Crescita a follicoli (mm/g)</td>
</tr>
<tr>
<td>II</td>
<td>167,79</td>
<td>0,03</td>
<td>69,50</td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td>53,49</td>
<td>0,01</td>
<td>24,32</td>
<td>0,04</td>
</tr>
</tbody>
</table>

Considerando la durata di alcune fasi riproduttive nel contesto dei singoli cicli, si evince un’importante variabilità interindividuale evidenziata dalle deviazioni standard piuttosto alte. In particolare, la fase di transizione appare quella maggiormente variabile, seguita
da follicologenesi ed embriogenesi. La fase anovulatoria appare invece di durata più costante. La durata media delle singole fasi non mostra variazioni significative tra i due cicli successivi (Fig. 5.29). Analogamente, anche la durata delle sottofasi dell’embriogenesi appare sovrapponibile nei due cicli riproduttivi (Fig. 5.30). Prendendo in esame la crescita folicolare media, si nota un andamento crescente durante il ciclo. La fase anovulatoria è quella caratterizzata dallo sviluppo più lento. Il ritmo di crescita poi triplica con la successiva fase di transizione, per aumentare ulteriormente durante la follicologenesi. Confrontando i due cicli, non emergono differenze statisticamente significative (Fig. 5.31). Il numero di uova non cambia in modo rilevante dal punto di vista statistico tra i due anni valutati, mentre si osserva una differenza significativa (P < 0.05) relativamente al numero medio di slug deposite (Fig. 5.32).

Fig. 5.29 Durata media delle singole fasi (espresa in giorni) valutata durante il I Ciclo riproduttivo e durante il ciclo successivo. Le barre d’errore rappresentano la deviazione standard.
Fig. 5.30 Durata media delle sottofasi riconoscibili nell’embriogenesi (espressa in giorni) valutata durante il I ed il II Ciclo riproduttivo. Le barre d’errore rappresentano la deviazione standard.

Fig. 5.31 Crescita follicolare media (espressa in mm/giorno) valutata durante il I Ciclo riproduttivo e durante il ciclo successivo. Le barre d’errore rappresentano la deviazione standard.
5.3.3 Valutazione ormonale

Nel corso del secondo anno di studio per le singole fasi riproduttive sono stati valutati i livelli medi di metaboliti fecali di progesterone (ng/g) e 17β-estradiolo (pg/g), per evidenziare l’andamento degli stessi nel corso del ciclo riproduttivo (Tab. 5.4). Abbiamo poi analizzato più nel dettaglio le fasi anovulatoria e di follicologenesi, scomponendole in due sottofasi, una iniziale ed una tardiva. In particolare, la fase anovulatoria è stata così suddivisa: dalla deposizione fino ad un mese post-deposizione, e da questo momento alla termine della fase (quindi l’inizio della successiva transizione). Nella follicologenesi sono state considerate una prima parte (follicoli fino a 20 mm) ed una parte finale, prossima all’embriogenesi (follicoli > 20 mm) (Tab. 5.5).
Tabella 5.4 Livelli medi di progesterone (ng/g) ed estradiolo (pg/g) durante le fasi del ciclo riproduttivo. Le lettere minuscole (a, b) indicano l’esistenza di una differenza statisticamente significativa tra i valori corrispondenti a lettere distinte, e non statisticamente significativa tra i valori associati alla medesima lettera, con P < 0.01.

<table>
<thead>
<tr>
<th>Fase Anovulatoria</th>
<th>Transizione</th>
<th>Follicologenesi</th>
<th>Embriogenesi</th>
<th>SEM</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progesterone (ng/g)</td>
<td>11,4a</td>
<td>90,6a</td>
<td>108,6b</td>
<td>118,4b</td>
<td>5,77</td>
</tr>
<tr>
<td>Estradiolo (pg/g)</td>
<td>111,3b</td>
<td>112,2ab</td>
<td>74,2a</td>
<td>84,2ab</td>
<td>3,84</td>
</tr>
</tbody>
</table>

Tabella 5.5 Livelli medi di progesterone (ng/g) ed estradiolo (pg/g) durante le fasi del ciclo riproduttivo, con separazione della fase anovulatoria in due sottofasi: iniziale (entro un mese dalla deposizione) e finale (da un mese post-deposizione al termine). Anche la follicologenesi è stata suddivisa in: iniziale e finale (con follicoli oltre i 20 mm). Le lettere minuscole (a,b,c) indicano l’esistenza di una differenza statisticamente significativa tra i valori corrispondenti a lettere distinte, e non statisticamente significativa tra i valori associati alla medesima lettera, con P < 0.01.

<table>
<thead>
<tr>
<th>Fase Anovulatoria</th>
<th>Transizione</th>
<th>Follicologenesi</th>
<th>Embriogenesi</th>
<th>SEM</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progesterone (ng/g)</td>
<td>1,3a</td>
<td>45,3ab</td>
<td>90,0abc</td>
<td>108,0bc</td>
<td>110,5bc</td>
</tr>
<tr>
<td>Estradiolo (pg/g)</td>
<td>132,8c</td>
<td>67,2abc</td>
<td>109,2abc</td>
<td>71,3ab</td>
<td>92,98abc</td>
</tr>
</tbody>
</table>
Il progesterone mostra un andamento crescente durante le fasi del ciclo riproduttivo (Fig. 5.33). In particolare, dalla tabella 5.4 si evince che i livelli propri delle fasi anovulatoria e di transizione sono inferiori rispetto a quelli rilevati in corrispondenza delle successive fasi di follicologenesi ed embriogenesi, con differenza statisticamente significativa (P < 0.01). Per quanto riguarda l’estradiolo, si osserva un andamento meno regolare (Fig. 5.33). Dall’analisi statistica emerge la presenza di livelli statisticamente superiori durante la fase anovulatoria, rispetto a quella di follicologenesi (P < 0.01).

Considerando più nel dettaglio le fasi anovulatoria e di follicologenesi (Fig. 5.34), suddividendole in iniziale e finale, dalla tabella 5.5 si può notare l’assenza di differenza statisticamente significativa relativamente ai livelli di progesterone tra l’inizio e la fine della fase anovulatoria, così come tra l’inizio e la fine della follicologenesi. I livelli di tale ormone, tuttavia, risultano inferiori durante la fase anovulatoria iniziale e la follicologenesi, sia iniziale che finale (P < 0.01). Inoltre, il progesterone mostra valori più bassi durante la fase anovulatoria, sia iniziale che finale, rispetto all’embriogenesi, con differenza statisticamente significativa (P < 0.01). Come per il progesterone, anche nel caso dell’estradiolo non si osservano differenze significative tra fase anovulatoria iniziale e finale, né tra follicologenesi iniziale e finale. Tale ormone appare maggiormente presente, tuttavia, durante la fase anovulatoria iniziale rispetto alla follicologenesi iniziale ed all’embriogenesi, con differenza statisticamente significativa (P < 0.01).

5.3.4 Risultati complessivi

Quanto osservato può essere dunque tradotto graficamente associando i dati anamnestici/gestionali, ecografici ed ormonali come riportato in Figura 5.35.
Fig. 5.33 Livelli di metaboliti fecali del progesterone (espressi in ng/g) e del 17β-estradiolo durante il ciclo riproduttivo. Le barre d’errore indicano la deviazione standard.

Fig. 5.34 Livelli di metaboliti fecali del progesterone (espressi in ng/g) e del 17β-estradiolo durante le fasi del ciclo riproduttivo, con suddivisione della fase anovulatoria e della follicologenesi in una parte iniziale e una finale. Le barre d’errore indicano la deviazione standard.
Fig. 5.35 Schema del ciclo riproduttivo femminile di *P. regius*.
Per monitorare l’attività riproduttiva femminile di pitoni reali allevati in cattività, nel presente studio sono state impiegate due metodiche non invasive: ultrasonografia e dosaggio dei metaboliti fecali degli steroidi sessuali; integrate con valutazioni anamnestiche e comportamentali. Monitorare in modo preciso l’attività riproduttiva delle femmine sia prima che durante la stagione riproduttiva vera e propria è un aspetto impenscindibile nel contesto di un allevamento professionale per poter migliorare l’efficacia della gestione dei soggetti e per la buona riuscita dell’allevamento stesso. Diviene dunque necessario disporre di tecniche affidabili per il monitoraggio della funzionalità gonadica di ciascun animale (Graham et al., 2001). Come per molte specie non convenzionali, infatti, anche nel caso dei rettili è importante considerare la particolare sensibilità degli esemplari allo stress ed optare dunque per procedure poco o per nulla invasive (Schwarzenberger et al., 1996). Ciò vale a maggior ragione qualora, come nel presente studio, si voglia eseguire un monitoraggio su soggetti sani attraverso valutazioni frequenti (Ganesh e Yajurvedi, 2007; Brasfield et al., 2008).

Attraverso il semplice contenimento manuale degli esemplari ed il loro posizionamento in decubito laterale, o leggermente sollevati rispetto al piano, è stato possibile valutare adeguatamente tutte le strutture di interesse. L’approccio ventro-laterale, in particolare, ha permesso un’ottimale visualizzazione delle strutture ovariche. Ciò conferma quanto presente in letteratura; attualmente non sono tuttavia riportati dati circa la preferenza per
un lato piuttosto che per l’altro in termini di vantaggi nell’evidenziare i tessuti (Hochleitner e Hochleitner, 2004; Schilliger, 2010). Nel presente studio, invece, è stata riscontrata una migliore visualizzazione delle strutture dal lato destro per tutti i soggetti eccetto uno, per il quale non si sono riscontrate sostanziali differenze tra lato destro e sinistro.

Nel complesso sono stati valutati ovaie e ovidutti, follicoli, uova con diverso grado di calcificazione e vescicole embrionali. Follicoli e uova hanno mostrato caratteristiche ecografiche diverse nel corso del ciclo riproduttivo, suggerendo l’esistenza di fasi successive e distinguibili. In particolare, associando tali dati alle informazioni anamnestiche e comportamentali, abbiamo riconosciuto quattro fasi: anovulatoria, transizione, follicologenesi ed embriogenesi, a cui si aggiunge l’eventuale regressione follicolare. Ciò trova parziale riscontro con quanto riportato ad oggi in letteratura relativamente al pitone reale. Viene infatti proposta la distinzione tra una fase di quiescenza, una di atresia ed una successiva di sviluppo follicolare (Kottwitz et al., 2016).

Altri Autori hanno evidenziato la presenza di follicoli pre-vitellogenici, vitellogenici e uova sia per quanto concerne il pitone reale sia per altre specie di ofidi, quali boa arcobaleno (Epicrates cenchria) e pitone reticolato (Python reticulatus) (Martin de Camilo et al., 1999; Stahl, 2002; Enriquez et al., 2011).

La fase anovulatoria, definita nel presente studio, è caratterizzata dall’assenza di significativa attività ovarica. L’assunzione di prede è stata regolare per tutta la fase, conformemente a quanto riportato in letteratura (De Vosjoli et al., 1995; Mader, 2006; Sutherland, 2009). Anche in tale fase è stato possibile riconoscere lo stroma ovarico, grazie alla presenza di alcuni piccoli follicoli anecogeni (diametro < 5 mm). A differenza,
nel *Boa constrictor* le gonadi femminili durante la fase di inattività non risultano ecograficamente identificabili (Isaza *et al*., 1993). In termini di durata, tale fase è risultata quella più costante tra i diversi individui. Bisogna considerare che in natura la deposizione avviene generalmente durante la seconda metà della stagione secca, ossia da metà febbraio a inizio aprile, successivamente le femmine vanno incontro ad un periodo di inattività riproduttiva sino alla seconda stagione delle piogge, tra metà settembre e metà novembre (De Vosjoli, *et al*., 1995; Aubret *et al*., 2002; Sutherland, 2009).

In cattività queste stimolazioni ambientali vengono mimate attraverso il *conditioning*, in modo da favorire la ripresa dell’attività ovarica, e quindi il passaggio dalla fase anovulatoria alla fase di transizione. La simile durata della fase anovulatoria per soggetti allevati in condizioni standardizzate, può quindi essere associata ad una buona ed abbastanza omogenea risposta delle femmine alla variazione artificiale delle condizioni ambientali (soprattutto temperatura) volta alla ripresa dello sviluppo follicolare. Ciò è concorde con quanto riportato in letteratura; diversi Autori sottolineano infatti l’importanza e l’efficacia del *conditioning* (Rossi e Rossi, 2000; Stahl, 2002; Sutherland, 2009).

La prima parte dello sviluppo follicolare è stata identificata in questo studio come fase di transizione, al termine della quale la femmina inizia ad accettare il maschio. Ecograficamente è possibile identificare l’inizio di tale fase grazie alla visualizzazione di numerosi follicoli, con diametro tra 5 e 10 mm. Durante la prima parte della fase abbiamo riscontrato follicoli tondeggianti ed anecogeni, in accordo con quanto presente in letteratura. Sia per il pitone reale che per altre specie, come il *Boa constrictor*, sono infatti descritti follicoli pre-vitellogenici uniformemente anecogeni e tondi (Martin de Camilo
et al., 1999; Enriquez et al., 2011). Verso la fine della transizione, tuttavia, molti follicoli mutano di aspetto presentando un’area periferica caratterizzata da maggiore ecogenicità, pur mantenendo un centro anecogeno. Ciò li differenzia dunque dai follicoli vitellogenici descritti in letteratura (Martin de Camilo et al., 1999; Schilliger, 2010; Enriquez et al., 2011). Considerando la durata media della fase, abbiamo riscontrato una marcata variabilità interindividuale denunciata dall’elevato valore della deviazione standard. Ciò concorda con quanto presente in letteratura, in relazione alla variabilità non solo interspecifica ma anche intraspecifica esistente nell’ambito della riproduzione dei rettili (Mader, 2006; Sutherland, 2009).

Da quanto osservato sembra dunque che nonostante la risposta delle femmine alla stimolazione del conditioning sia sostanzialmente uniforme, con generale ripresa dell’attività ovarica, il prosequimento dello sviluppo follicolare sia influenzato anche da altre variabili, differenti dalla temperatura e dal ciclo luce/buio. Tali fattori andrebbero quindi a diversificare la risposta riproduttiva degli individui allevati in condizioni standardizzate, con diverse velocità di crescita follicolare e di conseguenza una differente durata della fase di transizione. Gli esemplari hanno comunque continuato regolarmente ad alimentarsi. Quest’ultimo aspetto si trova in linea con quanto presente in letteratura (De Vosjoli et al., 1995; Mader, 2006; Sutherland, 2009).

Con il raggiungimento del diametro di 10 mm da parte dei follicoli maggiori e l’accettazione del maschio da parte della femmina ha inizio la fase che abbiamo indicato come follicologenesi. Le prede vengono comunque presentate agli animali, anche se è stata riscontrata una minore assunzione delle stesse rispetto a quanto osservato durante le precedenti fasi del ciclo riproduttivo. Inoltre, le femmine hanno trascorso più tempo nella
zona fredda dei rispettivi rack e all’interno delle vaschette dell’acqua. Tutto ciò è conforme ai dati presenti in letteratura, in corrispondenza dello sviluppo follicolare è infatti descritta la minore assunzione di alimento da parte degli esemplari, così come il tentativo da parte degli stessi di abbassare la propria temperatura corporea (De Vosjoli et al., 1995; Sutherland, 2009). I follicoli, ancora numerosi, aumentano di dimensioni (sino a raggiungere i 30 mm) e presentano particolari caratteristiche ecografiche. Inizialmente abbiamo riscontrato una certa variabilità, con alcuni follicoli anecogeni ed altri con ecogenicità periferica più marcata. Successivamente abbiamo osservato una crescente intensificazione dell’ecogenicità dell’area centrale, riferibile alla formazione del tuorlo o vitello. Ciò trova corrispondenza con quanto presente in letteratura. Durante la vitellogenesi, infatti, il fegato trasforma i lipidi in vitellogenina, successivamente depositata a livello dei follicoli, il cui colore muta da bianco a giallo e la cui dimensione aumenta da 10 a 100 volte (Zug, 1993). In alcuni esemplari coinvolti nello studio, in corrispondenza della follicologenesi è stata inoltre osservata marcata epatomegalia. Anche questo conferma quanto presente in letteratura, in cui si riporta infatti che in corrispondenza del processo di vitellogenesi il fegato aumenta notevolmente il proprio volume (Mader, 2006).

Nella fase successiva, indicata come embriogenesi, la femmina non accetta il maschio e mostra follicoli con diametro iniziale di 30 mm ed ecogenicità variabile. La fase termina con la deposizione. La crescita follicolare aumenta rispetto alle fasi precedenti e la durata dell’embriogenesi (circa 2 mesi) risulta più costante tra i diversi esemplari, rispetto alle altre fasi del ciclo riproduttivo. Tra il termine della follicologenesi e la prima parte dell’embriogenesi avviene l’ovulazione, talvolta resa evidente da un ingrossamento del terzo caudale del corpo della femmina, seguita dalla formazione del guscio calcificato. A
circa metà dell’embriogenesi, inoltre, è stata riscontrata una muta pre-deposizione. In letteratura non sono riportati studi relativi alla velocità di sviluppo dei follicoli post-ovulatori e delle uova del pitone reale. In relazione, tuttavia, alla durata della gestazione i risultati ottenuti trovano corrispondenza con gli studi esistenti. La gestazione del pitone reale è infatti generalmente pari a due mesi, anche se esiste una certa variabilità legata al momento effettivo di ovulazione e fecondazione, anche in relazione alla possibilità delle femmine di conservare lo sperma maschile per mesi prima della fecondazione. In corrispondenza dell’ovulazione, inoltre, il terzo caudale del corpo della femmina si presenta generalmente ingrossato, anche se esiste variabilità tra soggetto e soggetto (De Vosjoli et al., 1995; Rossi e Rossi, 2000; Stahl, 2002; Sutherland, 2009). La muta pre-deposizione è a sua volta descritta in letteratura, a circa 1 mese dalla deposizione (Sutherland, 2009).

Durante l’embriogenesi le strutture riproduttive mostrano aspetti ecografici vari. In particolare, all’inizio della fase abbiamo riscontrato follicoli con marcata iperecogenicità periferica e minore ecogenicità centrale. Con l’aumentare delle dimensioni, i follicoli hanno assunto forma marcatamente ovale e un aspetto ecografico più uniforme, con iperecogenicità diffusa. Nella zona periferica, poi, sono stati evidenziati due distinti strati iperecogeni, compatibili con la formazione del guscio calcificato e di una membrana interna. In questa fase di sviluppo, infatti, avviene la progressiva formazione del guscio calcificato (Stahl, 2002; Sutherland, 2009).

Nel pitone reale esiste la possibilità che vengano deposte uova non fertili, dette slugs, caratterizzate da dimensioni ridotte e colorazione alterata (giallastra) rispetto alle uova fertili (Sutherland, 2009). Nel presente studio abbiamo valutato la possibilità di
differenziare precocemente, prima della deposizione, le uova fertili dalle slugs. Grazie all’aspetto ecografico molto irregolare di queste ultime, è possibile riscontrarne la presenza già circa tre settimane prima della deposizione. In letteratura non vi sono attualmente studi a questo proposito.

Anche nel caso dei rettili l’ultrasonografia è stata utilizzata con buoni risultati per valutare la vitalità embrionale, ma in specie ovovivipare (Sainsbury e Gilic, 1991; Isaza et al., 1993; Hernandez-Divers e Hernandez-Divers, 2001; Hochleitner e Hochleitner, 2004; Wilkinson et al., 2004; Stetter, 2006; Schillee, 2010). Nel presente studio abbiamo valutato embrione e relativa vitalità nel caso di *P. regius*, specie ovipara. L’embrione è valutabile ecograficamente circa due settimane prima della deposizione. Mediante Color Doppler è inoltre possibile valutarne la vascolarizzazione e, in prossimità della deposizione, il battito cardiaco. Anche nel caso del pitone reale risulta pertanto possibile monitorare lo sviluppo dell’embrione seguendo l’aumento delle dimensioni e controllando la vascolarizzazione.

Nel presente studio sono stati riscontrati, inoltre, casi di regressione follicolare. Abbiamo distinto tale evenienza dall’atresia fisiologica che interessa alcuni follicoli nel corso dello sviluppo follicolare con riduzione del numero di tali strutture durante il ciclo riproduttivo, passando dall’elevato numero di follicoli che iniziano lo sviluppo al più basso numero di uova effettivamente deposte (Norris, 2007; Tumkiratiwong et al., 2012; Kottwitz et al., 2016).

Abbiamo quindi considerato come regressione follicolare il fenomeno che prevede un crescente sviluppo dei follicoli sino a giungere alla fase di follicologenesi o embriogenesi, seguito da un processo di regressione dei follicoli stessi, con conseguente ritorno alle fasi
precedenti (anovulatoria o transizione) fino all’inizio del ciclo successivo. Ecograficamente, pertanto, si osserva un progressivo ritorno di follicoli giunti a dimensioni di oltre 10 mm, all’aspetto caratteristico delle fasi precedenti, con riduzione del diametro e variazione dell’ecogenicità. Ciò è concorde con quanto riportato in letteratura. Nel caso del pitone reale, così come in altri ofidi, sono stati riportati casi di regressione di follicolare con ciclo riproduttivo conclusosi senza deposizione (DeNardo e Autumn, 2001; Kottwitz et al., 2016). Non sono attualmente note le cause di tale fenomeno. Nel caso del *Python brongersmai* è stata ipotizzata un legame con la presenza o meno del maschio al momento dell’inizio dello sviluppo follicolare (DeNardo e Autumn, 2001). Tale ipotesi nel caso in particolare del presente studio non è verificata, in quanto tutte le femmine riproduttrici considerate erano stabulate singolarmente al momento dell’inizio dello sviluppo follicolare, con introduzione del maschio solo successiva, ma soltanto alcune hanno presentato regressione follicolare.

Il monitoraggio del ciclo riproduttivo nonché un adeguato controllo durante gestazione e deposizione rappresentano punti imprescindibili per la buona riuscita di un allevamento (Sykes, 2010). Nel presente studio abbiamo dunque utilizzato l’ultrasonografia per una valutazione precisa in corrispondenza del momento della deposizione. Questa tecnica si è dimostrata un valido ausilio per la visualizzazione degli ovidutti, nonché per la valutazione del progressivo ritorno di tali strutture alle condizioni tipiche della fase anovulatoria. Ad oggi, benché vi siano contributi relativi ad altre specie, non vi sono studi a tale proposito riferiti ai rettili (Kamimura *et al*., 1993; Yilmaz e Uçar, 2012).

Nel presente studio il numero medio di uova fertili per deposizione è risultato pari a 6,8 in un ciclo e 5,6 nel successivo, dunque in linea con quanto riportato in letteratura. Per il
pitone reale, infatti, il numero medio di uova deposte è pari a 6.5, con range tra 1 – 11 (Rossi e Rossi, 2000; Stahl, 2002).

Dal confronto tra i due cicli successivi seguiti, non emergono differenze significative per quanto riguarda la durata delle singole fasi, la velocità di crescita follicolare nelle suddette fasi né relativamente al numero medio di uova fertili deposte per singolo soggetto. È emerso invece un aumento statisticamente significativo del numero di slugs presenti per deposizione, senza che avvenissero cambiamenti sostanziali nella gestione dell’allevamento, mantenuto nelle medesime condizioni standardizzate per entrambi i cicli riproduttivi. In letteratura non sono tutt’oggi riportate spiegazioni relative alla formazione di tali strutture, la cui eziologia è probabilmente legata a diverse variabili (Sutherland, 2009).

Accanto alle valutazioni ecografiche, nel presente studio sono inoltre state eseguite indagini ormonali relativamente a progesterone e 17β-estradiolo. Infatti, per avere un quadro più completo dell’attività riproduttiva femminile è opportuno integrare i dati derivanti dall’ecografia con quelli legati alla valutazione degli steroidi sessuali (Lance et al., 2009). Benché il rilevamento dei livelli sierici di tali ormoni sia il metodo più diretto, il prelievo di campioni di sangue può rivelarsi difficoltoso in termini di accessi venosi nonché di stress per l’animale nel caso delle specie esotiche. Sono stati pertanto studiati metodi di rilevamento non invasivi, tra cui il dosaggio dei metaboliti ormonali fecali ed urinari per un elevato numero di specie (Goymann et al., 1999; Harper e Austad, 2000; Dehnhard et al., 2001; Hayssen et al., 2002; Morrow et al., 2002; Dehnhard et al., 2003; Ganswindt et al., 2003; Good et al., 2003; Touma et al., 2003; Turner et al., 2003; Hunt et al., 2004; Negrão et al., 2004; Gröschl, 2008; Hernandez et al., 2014).
In vista del benessere animale, trattandosi di un monitoraggio di soggetti sani con necessità di valutazioni ripetute, abbiamo eseguito il dosaggio dei metaboliti fecali dei suddetti ormoni. Per minimizzare la variabilità dovuta a fattori tecnici e biologici, abbiamo standardizzato le condizioni e le procedure relative a identificazione dei campioni (provenienti da un esemplare noto), condizioni ambientali e tempistica di raccolta, trasporto e conservazione, massa dei campioni, dieta, età, sesso, stato riproduttivo dei soggetti e tempo trascorso in cattività dagli stessi. Inoltre, il kit è stato validato valutando riproducibilità e ripetibilità del test, sensibilità e reattività crociata e mediante validazione clinica. Per un ottimale impiego di tali metodologie, basate su raccolta dei campioni con tecniche non invasive, è infatti importante considerare nel disegno sperimentale l’esistenza di fattori, soprattutto biologici e tecnici legati a campionamento ed analisi, che potrebbero complicare l’interpretazione dei risultati (Khan et al., 2002; Terio et al., 2002; Lynch et al., 2003; Millspaugh e Washburn, 2004; Tempel e Gutiérrez, 2004).

Nel presente studio, è stato osservato un andamento crescente dei livelli di progesterone durante il ciclo riproduttivo, fino ad un brusco calo al termine dell’embriogenesi. In particolare i livelli di progesterone sono apparsi significativamente più alti durante follicologenesi e, soprattutto, embriogenesi rispetto alle precedenti fasi anovulatoria e di transizione. I livelli di progesterone aumentano durante la gestazione in numerose specie di vertebrati, con il ruolo di mantenimento della gravidanza (Custodia-Lora e Callard, 2002; Taylor et al., 2004). Nelle specie vivipare, inoltre, il livello di tale ormone diminuisce in corrispondenza del parto (Taylor et al., 2004). In letteratura, ad oggi, non sono presenti studi relativi al dosaggio degli steroidi sessuali nel pitone reale, né da plasma né da feci. Sono invece stati realizzati alcuni studi riguardanti il dosaggio
plasmatico degli steroidi sessuali in altre specie di ofidi. Benchè si tratti di matrici biologiche differenti, considerando semplicemente l’andamento dei livelli ormonali si nota una corrispondenza tra l’andamento del progesterone emerso dal nostro studio sul pitone reale e quanto riportato in altre specie. Il livello di progesterone plasmatico appare significativamente più elevato durante la gestazione rispetto alla fase di sviluppo follicolare, con un abbassamento in corrispondenza della deposizione, in diverse specie di serpenti: serpente a sonagli (*Crotalus atrox*), cobra monocolo (*Naja kaouthia*), cascavel (*Crotalus durissus terrificus*), serpente giarrettiera terricolo (*Thamnophis elegans*), vipera (*Vipera aspis*) e mocassino acquatico (*Agkistrodon piscivorus*) (Highfill e Mead, 1975; Naulleau e Fleury, 1990; Bonnet et al., 2001; Almeida-Santos et al., 2004; Taylor et al., 2004; Graham et al., 2011; Tumkiratiwong et al., 2012). Dai risultati emersi nel nostro studio, appare dunque confermato quanto riportato in letteratura circa il probabile ruolo di questo ormone nel mantenimento della gestazione anche nel caso di alcune specie di rettili (Highfill e Mead, 1975; Naulleau e Fleury, 1990; Bonnet et al., 2001; Custodia-Lora e Callard, 2002).

Nel presente studio il 17β-estradiolo è apparso significativamente maggiore in corrispondenza della fase anovulatoria, rispetto alle fasi di follicologenesi ed embriogenesi. I risultati emersi dal nostro studio non sono tuttavia in accordo con quanto riportato in letteratura, presentano un andamento diverso da quello dedotto dai dosaggi plasmatici dell’ormone per altre specie di ofidi. In particolare il serpente a sonagli (*Crotalus atrox*), il cobra monocolo (*Naja kaouthia*) ed il cascavel (*Crotalus durissus terrificus*) mostrano livelli di estradiolo più elevati durante accoppiamento e sviluppo follicolare rispetto a quelli rilevati durante la gestazione (Taylor et al., 2004; Almeida-Santos et al., 2004; Tumkiratiwong et al., 2012). Nel caso del crotalo del pacifico
settentrionale (*Crotalus oreganus*), invece, non sono stati evidenziati aumenti significativi in corrispondenza di particolari fasi del ciclo riproduttivo (Lind *et al*., 2010). Per quanto riguarda, invece, il dosaggio dei metaboliti fecali degli steroidi sessuali nei rettili, in letteratura sono attualmente presenti soltanto pochi studi relativi a cheloni, camaleonte velato (*Chamaeleo calyptratus*) e lucertola chiazzata dalla lingua blu (*Tiliqua nigrolutea*), quest’ultima valutata in relazione al monitoraggio dell’attività riproduttiva del maschio (Casares, 1995; Atkins *et al*., 2002; Kummrow *et al*., 2011). Nel caso del camaleonte velato gli Autori hanno invece valutato il ciclo riproduttivo femminile, evidenziando una corrispondenza significativa tra le concentrazioni di metaboliti fecali di 17β-estradiolo, progesterone e testosterone ed i livelli plasmatici degli stessi (Kummrow *et al*., 2011). Anche in questa specie il progesterone ha mostrato un livello elevato poco prima della deposizione (Kummrow *et al*., 2011). Non sono invece attualmente riportati studi relativi all’applicazione di tale metodica negli ofidi.
Benché siano state riscontrate analogie tra alcuni sauri ed alcuni ofidi per quanto concerne morfologia e topografia delle gonadi, l’elevato numero di specie e la scarsa presenza di informazioni in letteratura circa un’accurata descrizione dell’aspetto ecografico delle strutture ovariche durante il ciclo riproduttivo, nonché relativamente all’esistenza di determinate fasi durante il ciclo stesso, rendono necessari ulteriori approfondimenti per le singole specie. L’accurata conoscenza dell’aspetto ultrasonografico delle strutture riproduttive femminili normali è infatti fondamentale non solo per il monitoraggio dei soggetti sani, ma anche per la diagnosi precoce di eventuali stati patologici, quali ritenzione ovarica o neoplasie (Schilliger, 2010; Banzato et al., 2012). La valutazione degli steroidi sessuali fornisce informazioni fondamentali per la gestione riproduttiva di un gruppo di animali, come nel contesto di un allevamento. La variazione dei livelli di tali ormoni è infatti legata a fenomeni quali raggiungimento della maturità sessuale, gestazione, passaggio tra diverse fasi del ciclo riproduttivo (Kummrow et al., 2011). Come metodica di monitoraggio assolutamente non invasiva il dosaggio dei metaboliti fecali degli steroidi sessuali ha dimostrato di essere uno strumento efficace in diverse specie animali. Non necessitando di contenimento o prelievi ematici, questa tecnica appare utile soprattutto nel caso di specie non convenzionali e particolarmente sensibili allo stress (Kummrow et al., 2011). Nonostante la somiglianza nelle strutture molecolari degli ormoni steroidei gonadici di tutto il regno animale, esistono differenze specie-
specifiche, perciò è importante realizzare studi appositi per una determinata specie in modo da ampliare ed approfondire le conoscenze in merito (Lasley e Kirkpatrick, 1991; Schwarzenberger et al., 1996; Touma e Palme, 2005).

Da ciò, concludendo, nasce l’importanza di ricerche volte ad approfondire le conoscenze circa l’impiego di tali metodiche non invasive relativamente alle singole specie. Il presente studio suggerisce che mediante indagine ultrasonografica sia possibile identificare chiaramente diverse fasi del ciclo riproduttivo femminile del Pitone reale, con caratteristiche peculiari. Consente di identificare con precisione la fase di follicologenesi e quindi di evidenziare il momento giusto per l’introduzione del maschio. L’ultrasonografia è utile inoltre per identificare precocemente i casi di regressione follicolare o formazione di slugs. Si tratta dunque di una tecnica decisamente importante nel contesto di un allevamento professionale. Il dosaggio dei metaboliti fecali degli steroidi sessuali ed in particolare del progesterone, risulta essere un’ulteriore fonte di informazioni relative al ciclo riproduttivo femminile di questa specie. In conclusione, il nostro studio suggerisce che l'associazione di ecografia e dosaggio dei metaboliti fecali degli ormoni steroidei, permette di monitorare in modo preciso l’attività riproduttiva di femmine di pitone reale allevate in cattività.
BIBLIOGRAFIA

- Auliya, M. 2003. Hot trade in cool creatures - a review of the live reptile trade in the European Union in the 1990s with a focus on Germany. TRAFFIC Europe. Brussels, Belgium

Broghammer, S. 2001. Ball Pythons Habitat, Care and Breeding. Trossingen: M&S Reptilien Verlag

Ellis, T., Chappell, M. 1986. Metabolism, temperature relations, maternal behavior, and reproductive energetics in the ball python (Pythonregius). *J Comp Physiol B*, 157(3): 393-403

Legge 7 Febbraio 1992, n 150 art. 8-bis, in materia di “Disciplina dei reati relativi all'applicazione in Italia della convenzione sul commercio internazionale delle specie animali e vegetali in via di estinzione, firmata a Washington il 3 marzo1973, di cui alla legge 19 dicembre 1975, n. 874, e del regolamento (CEE) n. 3626/82, e successive modificazioni, nonché norme per la commercializzazione e la detenzione di esemplari vivi di mammiferi e rettili che possono costituire pericolo per la salute e l'incolumità pubblica”

Legge Regionale, Regione Emilia Romagna, 17 febbraio 2005, n. 5, in materia di “Norme a tutela del benessere animale”

Regolamento (CE) 4 maggio 2006, n 865, recante modalità di applicazione del regolamento (CE) n. 338/97 del Consiglio relativo alla protezione di specie della flora e della fauna selvatiche mediante il controllo del loro commercio

